Skip to main content
Log in

Dose coefficients of percentile-specific computational phantoms for photon external exposures

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The use of dose coefficients (DCs) based on the reference phantoms recommended by the International Commission on Radiological Protection (ICRP) with a fixed body size may produce errors to the estimated organ/tissue doses to be used, for example, for epidemiologic studies depending on the body size of cohort members. A set of percentile-specific computational phantoms that represent 10th, 50th, and 90th percentile standing heights and body masses in adult male and female Caucasian populations were recently developed by modifying the mesh-type ICRP reference computational phantoms (MRCPs). In the present study, these percentile-specific phantoms were used to calculate a comprehensive dataset of body-size-dependent DCs for photon external exposures by performing Monte Carlo dose calculations with the Geant4 code. The dataset includes the DCs of absorbed doses for 29 individual organs/tissues from 0.01 to 104 MeV photon energy, in the antero-posterior, postero-anterior, right lateral, left lateral, rotational, and isotropic geometries. The body-size-dependent DCs were compared with the DCs of the MRCPs in the reference body size, showing that the DCs of the MRCPs are generally similar to those of the 50th percentile standing height and body mass phantoms over the entire photon energy region except for low energies (≤ 0.03 MeV); the differences are mostly less than 10%. In contrast, there are significant differences in the DCs between the MRCPs and the 10th and 90th percentile standing height and body mass phantoms (i.e., H10M10 and H90M90). At energies of less than about 10 MeV, the MRCPs tended to under- and over-estimate the organ/tissue doses of the H10M10 and H90M90 phantoms, respectively. This tendency was revised at higher energies. The DCs of the percentile-specific phantoms were also compared with the previously published values of another phantom sets with similar body sizes, showing significant differences particularly at energies below about 0.1 MeV, which is mainly due to the different locations and depths of organs/tissues between the different phantom libraries. The DCs established in the present study should be useful to improve the dosimetric accuracy in the reconstructions of organ/tissue doses for individuals in risk assessment for epidemiologic investigations taking body sizes into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavanallaf A, Xie T, Zaidi H (2019) Development of a library of adult computational phantoms based on anthropometric indexes. IEEE Trans Radiat Plasma Med Sci 3:65–75. https://doi.org/10.1109/TRPMS.2018.2816072

    Article  Google Scholar 

  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman G, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira VD, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser KL, Grichine VM, Guatelli S, Guèye P, Gumplinger P, Howard AS, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko VN, Jones FW, Jun SY, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee SB, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia MG, Pokorski W, Quesada JM, Raine M, Reis MA, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin JI, Strakovski II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran HN, Truscott PR, Urban L, Uzhinski V, Verbeke JM, Verderi M, Wendt BL, Wenzel H, Wright DH, Yamashita T, Yarba J, Yoshida H (2016) Recent developments in Geant4. Nucl Instr Meth Phys Res A 835:186–225. https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  • Broggio D, Beurrier J, Bremaud M, Desbrée A, Farah J, Huet C, Franck D (2011) Construction of an extended library of adult male 3D models: rationale and results. Phys Med Biol 56:7659–7692. https://doi.org/10.1088/0031-9155/56/23/020

    Article  Google Scholar 

  • Cassola VF, Milian FM, Kramer R, de Oliveira Lira CA, Khoury HJ (2011) Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations. Phys Med Biol 56:3749–3772. https://doi.org/10.1088/0031-9155/56/13/002

    Article  Google Scholar 

  • Chang LA, Borrego D, Lee C (2018) Body-weight dependent dose coefficients for adults exposed to idealised external photon fields. J Radiol Prot 38:1441–1453. https://doi.org/10.1088/1361-6498/aae66e

    Article  Google Scholar 

  • Chen Y, Qiu R, Li C, Wu Z, Li J (2016) Construction of Chinese adult male phantom library and its application in the virtual calibration ofin vivomeasurement. Phys Med Biol 61:2124–2144. https://doi.org/10.1088/0031-9155/61/5/2124

    Article  ADS  Google Scholar 

  • Choi Y, Shil Cha E, Jin Bang Y, Ko S, Ha M, Lee C, Jin Lee W (2018) Estimation of organ doses among diagnostic medical radiation workers in South Korea. Radiat Prot Dosimetry 179:142–150. https://doi.org/10.1093/rpd/ncx239

    Article  Google Scholar 

  • Geyer AM, O’Reilly S, Lee C, Long DJ, Bolch WE (2014) The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults—application to CT dosimetry. Phys Med Biol 59:5225–5242. https://doi.org/10.1088/0031-9155/59/18/5225

    Article  Google Scholar 

  • Gordon CC, Blackwell CL, Bradtmiller B, Parham JL, Barrientos P, Paquette SP, Corner BD, Carson J, Venezia JC, Rockwell BM, Mucher M, Kristensen S (2014) 2012 anthropometric survey of U.S. army personnel: methods and summary statistics. Army Natick Soldier Research Development and Engineering Center MA, Natick

    Google Scholar 

  • ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publ 103 Ann ICRP 37:1–332

    Google Scholar 

  • ICRP (2009) Adult reference computational phantoms. ICRP Publ 110 Ann ICRP 39:1–166

    Google Scholar 

  • ICRP (2010) Conversion coefficients for radiological protection quantities for external radiation exposures. ICRP Publ 116 Ann ICRP 40:1–258

    Google Scholar 

  • Johnson PB, Bahadori AA, Eckerman KF, Lee C, Bolch WE (2011) Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update. Phys Med Biol 56:2347–2365. https://doi.org/10.1088/0031-9155/56/8/002

    Article  Google Scholar 

  • Kainz W, Neufeld E, Bolch WE, Graff CG, Kim CH, Kuster N, Lloyd B, Morrison T, Segars P, Yeom YS, Zankl M, Xu XG, Tsui BMW (2019) Advances in computational human phantoms and their applications in biomedical engineering—a topical review. IEEE Trans Radiat Plasma Med Sci 3:1–23. https://doi.org/10.1109/TRPMS.2018.2883437

    Article  Google Scholar 

  • Kim CH, Yeom YS, Nguyen TT, Han MC, Choi C, Lee H, Han H, Shin B, Lee JK, Kim HS, Zankl M, Petoussi-Henss N, Bolch WE, Lee C, Chung BS, Qiu R, Eckerman K (2018) New mesh-type phantoms and their dosimetric applications, including emergencies. Ann ICRP. https://doi.org/10.1177/0146645318756231

    Article  Google Scholar 

  • Kim S, Chang L, Mosher E, Lee C, Lee C (2019) A feasibility study to reduce misclassification error in occupational dose estimates for epidemiological studies using body size-dependent computational phantoms. IEEE Trans Radiat Plasma Med Sci 3:83–88. https://doi.org/10.1109/TRPMS.2018.2847227

    Article  Google Scholar 

  • Land CE, Kwon D, Hoffman FO, Moroz B, Drozdovitch V, Bouville A, Beck H, Luckyanov N, Weinstock RM, Simon SL (2015) Accounting for shared and unshared dosimetric uncertainties in the dose response for ultrasound-detected thyroid nodules after exposure to radioactive fallout. Radiat Res 183:159–173. https://doi.org/10.1667/RR13794.1

    Article  ADS  Google Scholar 

  • Lee H, Yeom YS, Nguyen TT, Choi C, Han H, Shin B, Zhang X, Kim CH, Chung BS, Zankl M (2019) Percentile-specific computational phantoms constructed from ICRP mesh-type reference computational phantoms (MRCPs). Phys Med Biol 64:045005. https://doi.org/10.1088/1361-6560/aafcdb

    Article  Google Scholar 

  • Simon SL, Bouville A, Kleinerman R, Ron E (2006) Dosimetry for epidemiological studies: learning from the past, looking to the future. Radiat Res 166:313–318. https://doi.org/10.1667/RR3536.1

    Article  ADS  Google Scholar 

  • Simon SL, Preston DL, Linet MS, Miller JS, Sigurdson AJ, Alexander BH, Kwon D, Yoder RC, Bhatti P, Little MP, Rajaraman P, Melo D, Drozdovitch V, Weinstock RM, Doody MM (2014) Radiation organ doses received in a nationwide cohort of U.S. radiologic technologists: methods and findings. Radiat Res 182:507–528. https://doi.org/10.1667/RR13542.1

    Article  ADS  Google Scholar 

  • Yeom YS, Han MC, Kim CH, Jeong JH (2013) Conversion of ICRP male reference phantom to polygon-surface phantom. Phys Med Biol 58:6985. https://doi.org/10.1088/0031-9155/58/19/6985

    Article  Google Scholar 

  • Yeom YS, Jeong JH, Han MC, Kim CH (2014) Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations. Phys Med Biol 59:3173–3185. https://doi.org/10.1088/0031-9155/59/12/3173

    Article  Google Scholar 

  • Yeom YS, Wang ZJ, Nguyen TT, Kim HS, Choi C, Han MC, Kim CH, Lee JK, Chung BS, Zankl M, Petoussi-Henss N, Bolch WE, Lee C (2016) Development of skeletal system for mesh-type ICRP reference adult phantoms. Phys Med Biol 61:7054–7073. https://doi.org/10.1088/0031-9155/61/19/7054

    Article  Google Scholar 

  • Yeom YS, Choi C, Han H, Lee H, Shin B, Nguyen TT, Han MC, Lee C, Kim CH (2019) Dose coefficients of mesh-type ICRP reference computational phantoms for idealized external exposures of photons and electrons. Nucl Eng Technol 51:843–852. https://doi.org/10.1016/j.net.2018.12.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the intramural program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. This work was also supported by the Nuclear Safety Research Development (NSR&D) Program through the Korea Foundation of Nuclear Safety (KOFONS) funded by the Nuclear Safety and Security Commission (NSSC) and by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (Project nos.: 1705006, 2016R1D1A1A09916337). One of the authors (Yeon Soo Yeom) was supported by a grant of the Korean Health Technology R&D Project through the Korean Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (Project no: H18C2257). Two of the authors (Chansoo Choi and Haegin Han) were supported by the Global PhD Fellowship program (Project nos.: NRF-2017H1A2A1046391, NRF-2018H1A2A1059767). The calculations in this work were performed on the National Institutes of Health’s High-Performance Computing Biowulf cluster (http://hpc.nih.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hyeong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, Y.S., Han, H., Choi, C. et al. Dose coefficients of percentile-specific computational phantoms for photon external exposures. Radiat Environ Biophys 59, 151–160 (2020). https://doi.org/10.1007/s00411-019-00818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00818-w

Keywords

Navigation