Skip to main content
Log in

Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Hypoxia inducible factor-1α (HIF-1α) is a critical transcriptional factor for the response of cells to hypoxic microenvironment and its expression induces resistance of hypoxic non-small-cell lung cancer (NSCLC) cells to radiotherapy. This study investigated how the activation of HIF-1α/B-cell lymphoma 2 (BCL-2) signaling under normoxic conditions impacted radiosensitivity of NSCLC cells. The recombinant pcDNA3.0-EGFP plasmids with wild-type or mutant HIF-1α complementary DNA (cDNA) were transfected into H1299 cells, an NSCLC cell line, establishing two H1299 sublines with high expression of HIF-1α. Compared with the levels of HIF-1α and BCL-2 proteins in non-transfected cells, increased levels of both proteins were found in transfected cells. Moreover, the expression of HIF-1α in non-transfected cells induced by chloride cobalt (CoCl2), a commonly used mimetic hypoxia reagent, was concomitant with the enhancement of BCL-2 expression. Conversely, reduction of HIF-1α expression by an inhibitor decreased the levels of BCL-2 proteins. The results revealed that the stabilization and expression of HIF-1α promoted the accumulation of BCL-2 proteins in H1299 cells. Subsequent experiments showed that intracellular HIF-1α/BCL-2 signaling was triggered in a normoxic environment after H1299 cells were exposed to irradiation, causing an elevated radioresistance. In contrast, blockage of HIF-1α/BCL-2 signaling leads to an elevated radiosensitivity. Proliferation of cells assay showed that, under normoxic conditions, population doubling times (PDTs) of irradiated cells were prolonged by suppression of HIF-1α/BCL-2 signaling. It is, therefore, indicated that HIF-1α/BCL-2 signaling activated by ionizing radiation reduces the radiosensitivity of H1299 cells independent of the hypoxic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brooks KR, To K, Joshi MB, Conlon DH, Herndon JE 2nd, D’Amico TA, Harpole DH Jr (2003) Measurement of chemoresistance markers in patients with stage III non-small cell lung cancer: a novel approach for patient selection. Ann Thorac Surg 76:187–193

    Article  Google Scholar 

  • Choi SM, Choi KO, Park YK, Cho H, Yang EG, Park H (2006) Clioquinol, a Cu(II)/Zn(II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxia-inducible factor-1alpha, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J Biol Chem 281:34056–34063

    Article  Google Scholar 

  • Daniel JC, Smythe WR (2004) The role of Bcl-2 family members in non-small cell lung cancer. Semin Thorac Cardiovasc Surg 16:19–27

    Article  Google Scholar 

  • Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137

    Article  Google Scholar 

  • Diensthuber M, Potinius M, Rodt T, Stan AC, Welkoborsky HJ, Samii M, Schreyögg J, Lenarz T, Stöver T (2008) Expression of bcl-2 is associated with microvessel density in olfactory neuroblastoma. J Neurooncol 89:131–139. https://doi.org/10.1007/s11060-008-9602-9

    Article  Google Scholar 

  • Duan Y, He Q, Yue K, Si H, Wang J, Zhou X, Wang X (2017) Hypoxia induced Bcl-2/Twist1 complex promotes tumor cell invasion in oral squamous cell carcinoma. Oncotarget 8:7729–7739. https://doi.org/10.18632/oncotarget.13890

    Google Scholar 

  • Gong C, Gu R, Jin H, Sun Y, Li Z, Chen J, Wu G (2016) Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells. Exp Biol Med (Maywood) 241:387–395. https://doi.org/10.1177/1535370215609694

    Article  Google Scholar 

  • Gu Q, He Y, Ji J, Yao Y, Shen W, Luo J, Zhu W, Cao H, Geng Y, Xu J, Zhang S, Cao J, Ding WQ (2015) Hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the SDF-1α/CXCR8 pathway in non-small cell lung carcinoma cells. Oncotarget 6:10893–11907

    Google Scholar 

  • Ikezawa Y, Sakakibara-Konishi J, Mizugaki H, Oizumi S, Nishimura M (2017) Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. Int J Clin Oncol 22:59–69. https://doi.org/10.1007/s10147-016-1031-8

    Article  Google Scholar 

  • Jin W, Wang J, Xu S, Xiao L, Chen G, Zhang W, Li J (2013) Radioprotective effect on HepG2 cells of low concentrations of cobalt chloride: induction of hypoxia-inducible factor-1 alpha and clearance of reactive oxygen species. J Radiat Res 54:203–209. https://doi.org/10.1093/jrr/rrs086

    Article  Google Scholar 

  • Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144

    Article  Google Scholar 

  • Kim WY, Oh SH, Woo JK, Hong WK, Lee HY (2009) Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 69:1624–1632. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  • Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y, Lee SJ (2014) Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 354:132–141. https://doi.org/10.1016/j.canlet.2014.07.048

    Article  Google Scholar 

  • Kuo YC, Wu HT, Hung JJ, Chou TY, Teng SC, Wu KJ (2015) Nijmegen breakage syndrome protein 1 (NBS1) modulates hypoxia inducible factor-1α (HIF-1α) stability and promotes in vitro migration and invasion under ionizing radiation. Int J Biochem Cell Biol 64:229–238. https://doi.org/10.1016/j.biocel.2015.04.015

    Article  Google Scholar 

  • Li J, Ke Y, Huang M, Huang S, Liang Y (2015) Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry of hypoxic human glioma cells. Exp Ther Med 9:977–981

    Article  Google Scholar 

  • Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C, Han S, Liu J, Sun S, Han Z, Wu K, Fan D (2008) Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99:121–128

    Google Scholar 

  • Liu K, Sun B, Zhao X, Wang X, Li Y, Qiu Z, Gu Q, Dong X, Zhang Y, Wang Y, Zhao N (2015) Hypoxia induced epithelial–mesenchymal transition and vasculogenic mimicry formation by promoting Bcl-2/Twist1 cooperation. Exp Mol Pathol 99:383–391. https://doi.org/10.1016/j.yexmp.2015.08.009

    Article  Google Scholar 

  • Loriot Y, Mordant P, Brown BD, Bourhis J, Soria JC, Deutsch E (2010) Inhibition of BCL-2 in small cell lung cancer cell lines with oblimersen, an antisense BCL-2 oligodeoxynucleotide (ODN): in vitro and in vivo enhancement of radiation response. Anticancer Res 30:3869–3878

    Google Scholar 

  • Manickam DS, Hirata A, Putt DA, Lash LH, Hirata F, Oupický D (2008) Overexpression of Bcl-2 as a proxy redox stimulus to enhance activity of non-viral redox-responsive delivery vectors. Biomaterials 29:2680–2688. https://doi.org/10.1016/j.biomaterials.2008.03.009

    Article  Google Scholar 

  • Milani M, Venturini S, Bonardi S, Allevi G, Strina C, Cappelletti MR, Corona SP, Aguggini S, Bottini A, Berruti A, Jubb A, Campo L, Harris AL, Gatter K, Fox SB, Generali D, Roviello G (2017) Hypoxia-related biological markers as predictors of epirubicin-based treatment responsiveness and resistance in locally advanced breast cancer. Oncotarget 8:78870–78881. https://doi.org/10.18632/oncotarget.20239

    Article  Google Scholar 

  • Miyasaka A, Oda K, Ikeda Y, Sone K, Fukuda T, Inaba K, Makii C, Enomoto A, Hosoya N, Tanikawa M, Uehara Y, Arimoto T, Kuramoto H, Wada-Hiraike O, Miyagawa K, Yano T, Kawana K, Osuga Y, Fujii T (2015) PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol Oncol 138:174–180. https://doi.org/10.1016/j.ygyno.2015.04.015

    Article  Google Scholar 

  • Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287:9873–9886. https://doi.org/10.1074/jbc.M111.312694

    Article  Google Scholar 

  • Provencio M, Sánchez A (2014) Therapeutic integration of new molecule-targeted therapies with radiotherapy in lung cancer. Transl Lung Cancer Res 3:89–94. https://doi.org/10.3978/j.issn.2218-6751

    Google Scholar 

  • Radwan SM, Hamdy NM, Hegab HM, El-Mesallamy HO (2016) Beclin-1 and hypoxia-inducible factor-1α genes expression: potential biomarkers in acute leukemia patients. Cancer Biomark 16:619–626. https://doi.org/10.3233/CBM-160603

    Article  Google Scholar 

  • Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252. https://doi.org/10.1158/1078-0432.CCR-0688-3

    Article  Google Scholar 

  • Schmidt LH, Görlich D, Spieker T, Rohde C, Schuler M, Mohr M, Humberg J, Sauer T, Thoenissen NH, Huge A, Voss R, Marra A, Faldum A, Müller-Tidow C, Berdel WE, Wiewrodt R (2014) Prognostic impact of Bcl-2 depends on tumor histology and expression of MALAT-1 lncRNA in non-small-cell lung cancer. J Thorac Oncol 9:1294–1304. https://doi.org/10.1097/JTO.0000000000000243

    Article  Google Scholar 

  • Sermeus A, Genin M, Maincent A, Fransolet M, Notte A, Leclere L, Riquier H, Arnould T, Michiels C (2012) Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS One 7:e47519. https://doi.org/10.1371/journal.pone.0047519

    Article  ADS  Google Scholar 

  • Subtil FS, Wilhelm J, Bill V, Westholt N, Rudolph S, Fischer J, Scheel S, Seay U, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F, Dahm-Daphi J, Hänze J (2014) Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency. FASEB J 28:1412–1421. https://doi.org/10.1096/fj.13-242230

    Article  Google Scholar 

  • Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, Hu C, Liu Y (2015) Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol 46:750–756. https://doi.org/10.3892/ijo.2014.2745

    Article  Google Scholar 

  • Tomiyama A, Tachibana K, Suzuki K, Seino S, Sunayama J, Matsuda KI, Sato A, Matsumoto Y, Nomiya T, Nemoto K, Yamashita H, Kayama T, Ando K, Kitanaka C (2010) MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death. Cell Death Dis 1:e60. https://doi.org/10.1038/cddis.2010.37

    Article  Google Scholar 

  • van der Heijden M, Zimberlin CD, Nicholson AM, Colak S, Kemp R, Meijer SL, Medema JP, Greten FR, Jansen M, Winton DJ, Vermeulen L (2016) Bcl-2 is a critical mediator of intestinal transformation. Nat Commun 7:10916. https://doi.org/10.1038/ncomms10916

    Article  Google Scholar 

  • Wang JH, Wu QD, Bouchier-Hayes D, Redmond HP (2002) Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells. Cancer 94:2745–2755

    Article  Google Scholar 

  • Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y, Gao F (2015a) Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol 32:352. https://doi.org/10.1007/s12032-014-0352-6

    Google Scholar 

  • Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, Xu S, Xiao L, Lu J, Luo X, Tang M, Bode AM, Dong Z, Sun L, Cao Y (2015b) EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget 6:5804–5817

    Google Scholar 

  • Zhang M, Qiu Q, Li Z, Sachdeva M, Min H, Cardona DM, DeLaney TF, Han T, Ma Y, Luo L, Ilkayeva OR, Lui K, Nichols AG, Newgard CB, Kastan MB, Rathmell JC, Dewhirst MW, Irsch DG (2015) HIF-1 alpha regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism. Radiat Res 183:594–609

    Article  ADS  Google Scholar 

  • Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532. https://doi.org/10.1038/cddis.2013.60

    Article  Google Scholar 

  • Zhao Q, Li Y, Tan BB, Fan LQ, Yang PG, Tian Y (2015) HIF-1α induces multidrug resistance in gastric cancer cells by inducing MiR-27a. PLoS One 10:e0132746. https://doi.org/10.1371/journal.pone.0132746

    Article  Google Scholar 

  • Zou K, Tong E, Xu Y, Deng X, Zou L (2014) Down regulation of mammalian target of rapamycin decreases HIF-1α and survivin expression in anoxic lung adenocarcinoma A549 cell to elemene and/or irradiation. Tumour Biol 35:9735–9741. https://doi.org/10.1007/s13277-014-2226-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1432124 and 81673099). We appreciate the assistance by Ms. Micha Davila (Centre for Molecular Immunology and Infectious Disease, the Pennsylvania State University) for improvement of the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Zhao or Wensen Jin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xiao, L., Wang, F. et al. Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment. Radiat Environ Biophys 58, 439–448 (2019). https://doi.org/10.1007/s00411-019-00802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00802-4

Keywords

Navigation