Skip to main content

Advertisement

Log in

Stopping power and CSDA range calculations for incident electrons and positrons in breast and brain tissues

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The stopping power in some biological compounds for electrons and positrons was calculated over the energy range from 100 eV to 1 GeV. Total stopping power was obtained by summing the electronic (collisional) and radiative stopping power of the target materials and then employing the continuous slowing down approximation (CSDA) to calculate the path length of incident particles in the target. An effective charge approximation was used for the calculation of collisional stopping power, and an analytical expression for the radiation length was applied to obtain the radiative stopping power. Calculations of stopping power and CSDA range were based mostly on analytical expressions, to allow for an easy calculation of these parameters. The results were tabulated and compared with available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akar A, Gümüş H (2005) Electron stopping power in biological compounds for low and intermediate energies with the generalized oscillator strength (GOS) model. Radiat Phys Chem 73:196–203

    Article  ADS  Google Scholar 

  • Akar A, Gümüş H, Okumusoglu NT (2007) Total electron stopping powers and CSDA-ranges from 20 eV to 10 MeV electron energies for components of DNA and RNA. Adv Quant Chem 52:277–288

    Article  Google Scholar 

  • Akkerman A, Akkerman E (1999) Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10,000 eV. J Appl Phys 86:5809–5816

    Article  ADS  Google Scholar 

  • Amsler C, Doser M, Antonelli M et al (Particle Data Group) (2008) Review of particle physics (in Experimental Methods and Colliders). Phys Lett B 667:1–1340

  • Ashley JC (1988) Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data. J Electron Spectrosc Relat Phenom 46:199–214

    Article  Google Scholar 

  • Ashley JC (1990) Energy loss rate and inelastic mean free path of low-energy electrons and positrons in condensed matter. J Electron Spectrosc Relat Phenom 50:323–334

    Article  Google Scholar 

  • Barkas WH, Dyer JN, Heckman HH (1963) Resolution of the Σ-mass anomaly. Phys Rev Lett 11:26–28 (Erratum: Phys Rev Lett 11:138(1963))

    Google Scholar 

  • Berger MJ, Seltzer SM (1982) Stopping powers and ranges of electrons and positrons. National Bureau of Standards Report NBSIR 82-2550 A

  • Bethe HA (1930) Zur Thorie des Durchgags Cehneller Karpuskularstrahlen durch Materie. Ann Physik 5:325–400

    Article  ADS  MATH  Google Scholar 

  • Bragg WH, Kleeman R (1905) On the alpha particles of radium and their loss of range in passing through various atoms and molecules. Philos Mag 10:318–340

    Google Scholar 

  • Emfietzoglou D, Nikjoo H (2005) The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat Res 163:98–111

    Article  Google Scholar 

  • Emfietzoglou D, Nikjoo H (2007) Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1–10 keV range based on an improved dielectric description of the Bethe surface. Radiat Res 167:110–120

    Article  Google Scholar 

  • Emfietzoglou D, Cucinotta F, Nikjoo H (2005) A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat Res 164:202–211

    Article  Google Scholar 

  • Gümüş H (2005) Simple stopping power for low and intermediate energy electrons. Radiat Phys Chem 72:7–12

    Article  ADS  Google Scholar 

  • Gümüş H (2008) New stopping power formula for intermediate energy electrons. Appl Radiat Isot 66:1886–1890

    Article  Google Scholar 

  • Gümüş H, Kabadayı Ö, Tufan MÇ (2006) Calculation of the stopping power for intermediate energy positrons. Chin J Phys 44:290–296

    Google Scholar 

  • Hogstrom KR, Almond PR (2006) Review of electron beam therapy physics. Phys Med Biol 51:455–489

    Article  Google Scholar 

  • ICRU (1984) Stopping powers for electrons and positrons ICRU Report 37. International Commission on Radiation Units and Measurements, Bethesda

  • ICRU (1989) Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. International Commission on Radiation Units and Measurements, Bethesda

  • Lindhard J (1954) On the properties of a gas of charged particles. Dan Mat Fys Medd 28:1–57

    MathSciNet  Google Scholar 

  • Moadel RM, Nguyen AV, Lin EY, Lu P, Mani J, Blaufox MD, Pollard JW, Dadachova E (2003) Positron emission tomography agent 2-deoxy-2-[18F]fluoro-d-glucose has a therapeutic potential in breast cancer. Breast Cancer Res 5:R199–R205

    Article  Google Scholar 

  • Moadel RM, Weldon RH, Katz EB, Lu P, Mani J, Stahl M, Blaufox MD, Pestell RG, Charron MJ, Dadachova E (2005) Positherapy: targeted nuclear therapy of breast cancer with 18F-2-Deoxy-2-Fluoro-d-Glucose. Cancer Res 65:698–702

    Google Scholar 

  • Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Track-structure codes in radiation research. Rad Meas 41:1052–1074

    Article  Google Scholar 

  • Peterson LR, Green AES (1968) The relation between ionization yields, cross sections and loss functions. J Phys B Mol Phys 1:1131–1140

    Article  ADS  Google Scholar 

  • Ritchie RH (1959) Interaction of charged particles with a degenerate Fermi-Dirac electron gas. Phys Rev 114:644–654

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rohrlich F, Carlson BC (1954) Positron-electron differences in energy loss and multiple scattering. Phys Rev 93:38–44

    Article  ADS  MATH  Google Scholar 

  • Salvat F, Fernández-Varea JM, Acosta E, Sempau J (2005) PENELOPE a code system for Monte Carlo simulation of electron and photon transport. NEA, Data Bank, France

  • Seltzer SM (1989) Electron and positron stopping powers of materials database version 2.0, NIST Standard Reference Database 7

  • Seltzer SM, Berger MJ (1985) Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons. Nucl Instrum Meth B 12:95–134

    Article  ADS  Google Scholar 

  • Seltzer SM, Berger MJ (1986) Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100. Data Nucl Data Tables 35:345–418

    Article  ADS  Google Scholar 

  • Sugiyama H (1985) Stopping power formula for intermediate energy electrons. Phys Med Biol 30:331–335

    Article  Google Scholar 

  • Tan ZY, Xia YY, Zhao MW, Liu XD, Li F, Huang BD, Ji YJ (2004) Electron stopping power and mean free path in organic compounds over the energy range of 20–10,000 eV. Nucl Instrum Meth B 222:27–43

    Article  ADS  Google Scholar 

  • Tan ZY, Xia YY, Liu XD, Zhao MW, Ji YJ, Li F, Huang BD (2005) Electron inelastic interactions in bioorganic compounds in the energy range of 20–10,000 eV. Appl Phys A 81:779–786

    Article  ADS  Google Scholar 

  • Tan ZY, Xia YY, Zhao MW, Liu XD (2006) Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20–20,000 eV. Radiat Environ Biophys 45:135–143

    Article  Google Scholar 

  • Tsai Y-S (1974) Pair production and bremsstrahlung of charged leptons. Rev Mod Phys 46: 815–851 (Erratum: 49(4):421–423(1977))

    Google Scholar 

  • Tufan MÇ, Gümüş H (2011) A Study on the calculation of stopping power and CSDA range for incident positrons. J Nucl Mater 412:308–314

    Article  ADS  Google Scholar 

  • Tufan MÇ, Köroğlu A, Gümüş H (2005) Stopping power calculations for partially stripped projectiles in high energy region. Acta Phys Pol A 107:459–472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Çağatay Tufan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufan, M.Ç., Namdar, T. & Gümüş, H. Stopping power and CSDA range calculations for incident electrons and positrons in breast and brain tissues. Radiat Environ Biophys 52, 245–253 (2013). https://doi.org/10.1007/s00411-013-0457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0457-x

Keywords

Navigation