Skip to main content
Log in

Preliminary assessment of the risks associated with solar ultraviolet-A exposure

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

An approach is proposed to assess the periods of human skin exposure to solar ultraviolet-A (UV-A, 315–400 nm) irradiance in natural conditions that are able to yield doses found to trigger carcinogenesis in laboratory experiments. Weighting functions, adopted to perform such estimate are constructed, allowing for a comparison between environmental and laboratory doses. Furthermore, the impact of stratum corneum (SC) thickness on the studied environmental doses was investigated. Based on laboratory studies, it was found that exposure periods of less than a month, at mid-latitudes, could provide irradiance doses capable of causing tumor formation. The duration of these exposure periods closely depends on the exposure regime, atmospheric conditions and SC thickness. It is believed that the presented evaluations could provide a useful preliminary estimation of the risk associated with environmental UV-A exposure prior to the formulation of the corresponding action spectra and determination of the threshold doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM (2004) The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci USA 101:4954–4959

    Article  ADS  Google Scholar 

  • Ambach W, Blumthaler M (1993) Biological effectiveness of solar UV radiation in humans. Cell and Mol Life Sci 49:747–753

    Article  Google Scholar 

  • Anders A, Altheide HJ, Knälmann M, Tronnier H (1995) Action spectrum for erythema in humans investigated with dye laser. Photochem Photobiol 61:200–205

    Article  Google Scholar 

  • Antoniou WC, Kosmadaki MG, Stratigos A, Katsambas AD (2008) Sunscreens—what’s important to know. JEADV 22:1110–1119

    Google Scholar 

  • Bachelors A, Owens D (2009) Squamous cell carcinoma of the skin: current strategies for treatment and prevention. Curr Cancer Ther Rev 5:37–44

    Article  Google Scholar 

  • Boukamp P (2005) UV-induced skin cancer: similarities-variations. J Dtsch Dermatol Ges 3:493–503

    Article  Google Scholar 

  • Boukamp P, Petrussevska R, Breitkreutz D, Hornung J, Markham A, Fusenig N (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  Google Scholar 

  • Bouwstra JA, de Graaff A, Gooris GS, Nijsse J, Wiechers J, van Aelst AC (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120:750–758

    Article  Google Scholar 

  • Bruls WAG, Slaper H, Leun JCVD, Berrens L (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem Photobiol 40:485–494

    Article  Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation—mediated damage to cellular DNA (review). Mutat Res 571:3–17

    Article  Google Scholar 

  • Coblentz WW, Stair R (1934) Data of the spectral erythemic reaction of the untanned human skin to ultraviolet radiation. J Res 12:13–14

    Google Scholar 

  • Dornelles S, Goldim J, Cestari T (2004) Determination of the minimal erythema dose and colorimetric measurements as indicators of skin sensitivity to UV-B radiation. Photochem Photobiol 79:540–544

    Article  Google Scholar 

  • Egawa M, Hirao T, Takahashi M (2007) In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy. Acta Derm-Venereol 87:4–8

    Article  Google Scholar 

  • Elterman L (1968) UV, visible, and IR attenuation for altitudes to 50 km. Environmental research papers, no. 285, Report 68-0153, Air Force Cambridge Research Laboratories

  • Freeman SE, Hacham H, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM (1989) Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci USA 86:5605–5609

    Article  ADS  Google Scholar 

  • Gambichler T, Künzlberger B, Paech V, Kreuter A, Boms S, Bader A, Moussa G, Sand M, Altmeyer P, Hoffmann K (1989) UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study. Clin Exp Dermato 30:79–82

    Article  Google Scholar 

  • Godar D (2005) UV doses worldwide. Photochem Photobiol 81:736–749

    Article  Google Scholar 

  • He YY, Pi J, Huang JL, Diwan BA, Waalkes MP, Chignell CF (2006) Chronic UVA irradiation of human hacat keratinocytes induces malignant transformation associated with acquired apoptotic resistance. Oncogene 25:3680–3688

    Article  Google Scholar 

  • Jones CA, Huberman E, Cunningham ML, Peak MJ (1987) Mutagenesis and cytotoxicity in human epithelial cells by far- and near-ultraviolet radiations: action spectra. Radiat Res 110:244–254

    Article  Google Scholar 

  • Koepke P, Mech M (2005) UV irradiance on arbitrarily oriented surfaces: variation with atmospheric and ground properties. Theor Appl Climatol 81:25–32

    Article  ADS  Google Scholar 

  • Kojoa K, Jansenc CT, Nybomd P, Huurtoa L, Laihiac J, Ilusa T, Auvinena A (2006) Population exposure to ultraviolet radiation in finland 1920–1995: Exposure trends and a time-series analysis of exposure and cutaneous melanoma incidence. Environ Res 101:123–131

    Article  Google Scholar 

  • Lavker RM, Gerberick GF, Veres D, Irwin CJ, Kaidbey KH (1995) Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. J Am Acad Dermatol 32:53–62

    Article  Google Scholar 

  • Luckiesh M, Holladay LL, Taylor AH (1930) Reaction of untanned human skin to ultraviolet radiation. J Opt Soc Am 20:423–432

    Article  ADS  Google Scholar 

  • Madronich S, Flocke S (1997) In solar ultraviolet radiation—modeling, measurements and effects, NATO ASI series, vol I52. Springer, Berlin

    Google Scholar 

  • McKenzie RL, Liley JB, Björn LO (2009) UV radiation: balancing risks and benefits. Photochem Photobiol 85:88–98

    Article  Google Scholar 

  • McKinlay AF, Diffey BL (1987) A reference action spectrum for ultraviolet induced erythema in human skin. CIE J 6:17–22

    Google Scholar 

  • Mitchell D (2006) Revisiting the photochemistry of solar uva in human skin. Proc Natl Acad Sci USA 103:13567–13568

    Article  ADS  Google Scholar 

  • Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    Article  Google Scholar 

  • Norval M (2001) Effects of solar radiation on the human immune system. J Photochem Photobiol B 63:28–40

    Article  Google Scholar 

  • Palm MD, O’Donoghue MN (2007) Update on photoprotection. Dermatol Ther 20:360–376

    Article  Google Scholar 

  • Petkov B, Vitale V, Tomasi C, Bonafé U, Scaglione S, Flori D, Santaguida R, Gausa M, Hansen G, Colombo T (2006) Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Appl Opt 45:4383–4395

    Article  ADS  Google Scholar 

  • Pirot F, Berardesca E, Kalia YN, Singh M, Maibach HI, Guy RH (1998) Stratum corneum thickness and apparent water diffusivity: facile and noninvasive quantitation in vivo. Pharm Res 15:492–494

    Article  Google Scholar 

  • Rajeshwar P, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  Google Scholar 

  • Russell L, Wiedersberg S, Delgado-Charro MB (2008) The determination of stratum corneum thickness: an alternative approach. Eur J Pharm and Biopharm 69:861–870

    Article  Google Scholar 

  • Setlow R (1974) The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci USA 71:3363–3366

    Article  ADS  Google Scholar 

  • Setlow R, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90:6666–6670

    Article  ADS  Google Scholar 

  • Silvers A, Bowden GT (2003) UVA irradiation-induced activation of activator protein-1 is correlated with induced expression of AP-1 family members in the human keratinocyte cell line HaCaT. Photochem Photobiol 75:302–310

    Google Scholar 

  • Spiegel MR (1972) Theory and problems of statistics in SI units. McGraw-Hill International Book Company, New York

    Google Scholar 

  • Sutherland B (1997) UV effects in “the real word”: problems of UV dosimetry in complex organisms. J Photochem Photobiol B 40:8–13

    Article  Google Scholar 

  • Termorshuizen F, Garssen J, Norval M, Koulu L, Laihia J, Leino L, Jansen CT, Gruijl FD, Gibbs NK, Simone CD, Loveren HV (2002) A review of studies on the effects of ultraviolet irradiation on the resistance to infections: evidence from rodent infection models and verification by experimental and observational human studies. Int Immunopharmaco 2:263–275

    Article  Google Scholar 

  • Wang S, Setlow R, Berwick M, Polsky D, Marghoob AA, Kopf AW, Bart RS (2001) Ultraviolet A and melanoma: A review. J Am Acad Dermatol 44:837–846

    Article  Google Scholar 

  • Wang S, Stanfield JW, Osterwalder U (2008) In vitro assessments of UVA protection by popular sunscreens available in the United States. J Am Acad Dermatol 59:934–942

    Article  Google Scholar 

  • Wischermann K, Popp S, Moshir S, Scharfetter-Kochanek K, Wlaschek M, de Gruijl F, Hartschuh W, Greinert R, Volkmer B, Faust A, Rapp A, Schmezer P, Boukamp P (2008) UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene 27:4269–4280

    Article  Google Scholar 

  • Xiao P, Packham H, Zheng X, Singh H, Elliott C, Berg EP, Imhof RE (2007) Opto-thermal radiometry and condenser-chamber method for stratum corneum water concentration measurements. Appl Phys B 86:715–719

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Beate Volkmer from the Dermatology Centre, Buxtehude, Germany, for providing the spectral characteristics of the UV-A lamps used in their experiments (Wischermann et al. 2008), and to Dr. Richard McKenzie from National Institute of Water and Atmospheric Research, Lauder, New Zealand for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyan Petkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkov, B., Vitale, V., Tomasi, C. et al. Preliminary assessment of the risks associated with solar ultraviolet-A exposure. Radiat Environ Biophys 50, 219–229 (2011). https://doi.org/10.1007/s00411-010-0335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-010-0335-8

Keywords

Navigation