Skip to main content
Log in

Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Obtaining reliable petrochronological and geochemical data from metamict zircon may be challenging. Metamict zircon and crystalline apatite from the Meiwu granodiorite and its microgranular enclaves from the Paleo-Tethys belt are examined to constrain their crystallization ages and the genetic mechanism of related skarn mineralization. The metamict zircon yields highly disturbed 206Pb/238U dates. Transmission electron microscopy shows that radiation damage forms nanoscale-banded damaged zones, leading to spurious dates. The coexisting apatite has not accumulated radiation damage, and apatite crystals from the granodiorite and its enclaves yield reasonably precise LA-ICPMS U–Pb Tera–Wasserburg concordia lower intercept dates of 240.2 ± 3.8 and 239.9 ± 4.0 Ma (2σ), with MSWDs of 1.0 and 2.1. Considering the fast cooling of the granite, the U–Pb dates effectively represent crystallization ages for these rocks. Compositional analysis shows that there are no Ce anomalies in apatite in either the granodiorite or enclave, indicating low oxygen fugacities. Apatite crystals from enclaves have weaker negative Eu anomalies, higher Sr, and lower HREE and Y contents than those in granodiorite. The compositions confirm enclaves as products of water-rich melts, resulting in amphibole fractionation and suppression of plagioclase crystallization. The hydrous magma induced production of hydrothermal-fluids that mobilized metals dispersed in dry magma and concentrated them into mineralization traps, which contributed to the formation of widespread skarns in Paleo-Tethys belt. This study demonstrates that apatite is effective in tracing the evolution of magmatic systems containing metamict zircon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barfod GH, Krogstad EJ, Frei R, Albarède F (2005) Lu–Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu–Hf isotopic closure in metamorphic apatite. Geochim Cosmochim Acta 69(7):1847–1859

    Article  Google Scholar 

  • Belousova E, Walters S, Griffin W, O’reilly S (2001) Trace–element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust J Earth Sci 48(4):603–619

    Article  Google Scholar 

  • Buntebarth G (2012) Geothermics: an introduction. Springer Science & Business Media, Berlin

    Google Scholar 

  • Cao M, Li G, Qin K, Seitmuratova EY, Liu Y (2012) Major and trace element characteristics of Apatites in Granitoids from Central Kazakhstan: implications for Petrogenesis and Mineralization. Resour Geol 62(1):63–83

    Article  Google Scholar 

  • Cao MJ, Evans NJ, Qin KZ, Danišík M, Li GM, McInnes BI (2019) Open apatite Sr isotopic system in low–temperature hydrous regimes. J Geophys Res Solid Earth 124(11):11192–11203

    Article  Google Scholar 

  • Chamberlain KR, Bowring SA (2001) Apatite–feldspar U-Pb thermochronometer: a reliable, mid-range (∼ 450 °C), diffusion-controlled system. Chem Geol 172(1–2):173–200

    Article  Google Scholar 

  • Chang Z, Meinert LD (2008) The Empire Cu–Zn mine, Idaho: exploration implications of unusual skarn features related to high fluorine activity. Econ Geol 103(5):909–938

    Article  Google Scholar 

  • Cherniak DJ, Lanford WA, Ryerson F (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Acta 55(6):1663–1673

    Article  Google Scholar 

  • Chew DM, Spikings RA (2015) Geochronology and thermochronology using apatite: time and temperature, lower crust to surface. Elements 11(3):189–194

    Article  Google Scholar 

  • Chew DM, Sylvester PJ, Tubrett MN (2011) U-Pb and Th–Pb dating of apatite by LA–ICPMS. Chem Geol 280(1–2):200–216

    Article  Google Scholar 

  • Chew DM, Petrus JA, Kamber BS (2014) U-Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol 363:185–199

    Article  Google Scholar 

  • Cochrane R, Spikings RA, Chew D, Wotzlaw JF, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R (2014) High temperature (> 350 C) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Acta 127:39–56

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500

    Article  Google Scholar 

  • Deng J, Wang QF (2016) Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res 36:219–274

    Article  Google Scholar 

  • Deng J, Wang CM, Zi JW, Xia R, Li Q (2018) Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: new zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Res 62:75–92

    Article  Google Scholar 

  • Deng J, Qiu KF, Wang QF, Goldfarb RJ, Yang LQ, Zi JW, Geng JZ, Ma Y (2020a) In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province. Eastern China Econ Geol 115(3):671–685

    Article  Google Scholar 

  • Deng J, Yang LQ, Groves DI, Zhang L, Qiu KF, Wang QF (2020b) An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth Sci Rev 208:103274

    Article  Google Scholar 

  • Deng J, Wang QF, Gao L, He WY, Yang ZY, Zhang SH, Chang LJ, Li GJ, Sun X, Zhou DQ (2021) Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet. Geology 49(4):428–432

    Article  Google Scholar 

  • Dodson H (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40(3):259–274

    Article  Google Scholar 

  • Dong Y, Santosh M (2016) Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res 29(1):1–40

    Article  Google Scholar 

  • Dong Y, Genser J, Neubauer F, Zhang G, Liu X, Yang Z, Heberer B (2011a) U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China. Gondwana Res 19(4):881–893

    Article  Google Scholar 

  • Dong Y, Zhang G, Neubauer F, Liu X, Genser J, Hauzenberger C (2011b) Tectonic evolution of the Qinling orogen, China: review and synthesis. J Asian Earth Sci 41(3):213–237

    Article  Google Scholar 

  • Dong Y, Yang Z, Liu X, Sun S, Li W, Cheng B, Zhang F, Zhang X, He D, Zhang G (2016) Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Res 30:144–158

    Article  Google Scholar 

  • Engi M (2017) Petrochronology based on REE-minerals: Monazite, Allanite, Xenotime. Apatite Rev Mineral Geochem 83(1):365–418

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. Rev Mineral Geochem 53(1):387–425

    Article  Google Scholar 

  • Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. Rev Mineral Geochem 53(1):1–25

    Article  Google Scholar 

  • Fu JN, Pirajno F, Yang F, Shivute E, Sun YZ, Ai N, Qiu KF (2021) Integration of zircon and apatite U-Pb geochronology and geochemical mapping of the Wude basalts (Emeishan large igneous province): a tool for a better understanding of the tectonothermal and geodynamic evolution of the Emeishan LIP. Geosci Front 12(2):573–585

    Article  Google Scholar 

  • Gao YY, Li XH, Griffin WL, O’Reilly SY, Wang YF (2014) Screening criteria for reliable U-Pb geochronology and oxygen isotope analysis in uranium-rich zircons: a case study from the Suzhou A-type granites, SE China. Lithos 192–195:180–191

    Article  Google Scholar 

  • Gao X, Yang LQ, Yan H, Meng JY (2020) Ore-forming processes and mechanisms of the Hongshan skarn Cu–Mo deposit, Southwest China: Insights from mineral chemistry, fluid inclusions, and stable isotopes. Ore Energy Resour Geol 4:100007

    Article  Google Scholar 

  • Ge R, Wilde SA, Nemchin AA, Whitehouse MJ, Bellucci JJ, Erickson TM (2019) Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia. Earth Planet Sci Lett 517:38–49

    Article  Google Scholar 

  • Geng JZ, Qiu KF, Gou ZY, Yu HC (2017) Tectonic regime switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu–Hf isotope of Dangchuan intrusive complex in Gansu, China. Geochemistry 77(4):637–651

    Article  Google Scholar 

  • Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110(5):551–556

    Article  Google Scholar 

  • Gregory CJ, McFarlane CRM, Hermann J, Rubatto D (2009) Tracing the evolution of calc-alkaline magmas: in-situ Sm–Nd isotope studies of accessory minerals in the Bergell Igneous Complex. Italy Chem Geol 260(1–2):73–86

    Article  Google Scholar 

  • Gu L, Zhang B, Hu S, Noguchi T, Hidaka H, Lin Y (2018) The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains. Icarus 303:47–52

    Article  Google Scholar 

  • He WY, Mo XX, He ZH, White NC, Chen JB, Yang KH, Wang R, Yu XH, Dong GC, Huang XF (2015) The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, southwest China. Econ Geol 110(6):1625–1641

    Article  Google Scholar 

  • He WY, Mo XX, Yang LQ, Xing YL, Dong GC, Yang Z, Gao X, Bao XS (2016) Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: implications for magma mixing/mingling and mineralization. Gondwana Res 40:230–248

    Article  Google Scholar 

  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90(2–3):316–328

    Article  Google Scholar 

  • Horstwood MSA, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40(3):311–332

    Article  Google Scholar 

  • Hu H, Li JW, Harlov DE, Lentz DR, McFarlane CR, Yang YH (2020) A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China: evidence from magnetite geochemistry and multi-mineral U-Pb geochronology. Bulletin 132(5–6):899–917

    Google Scholar 

  • Hughes JM, Harlov D, Rakovan JF (2018) Structural variations along the apatite F-OH join. Am Mineral 103(12):1981–1987

    Article  Google Scholar 

  • Jt S, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221

    Article  Google Scholar 

  • Kirkland CL, Yakymchuk C, Szilas K, Evans N, Hollis J, McDonald B, Gardiner NJ (2018) Apatite: a U-Pb thermochronometer or geochronometer? Lithos 318–319:143–157

    Article  Google Scholar 

  • Kogawa M, Watson EB, Ewing RC, Utsunomiya S (2012) Lead in zircon at the atomic scale. Am Mineral 97(7):1094–1102

    Article  Google Scholar 

  • Konecke BA, Fiege A, Simon AC, Linsler S, Holtz F (2019) An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim Cosmochim Acta 265:242–258

    Article  Google Scholar 

  • Kusiak MA, Whitehouse MJ, Wilde SA, Nemchin AA, Clark C (2013) Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology 41(3):291–294

    Article  Google Scholar 

  • Kusiak MA, Dunkley DJ, Wirth R, Whitehouse MJ, Wilde SA, Marquardt K (2015) Metallic lead nanospheres discovered in ancient zircons. Proc Natl Acad Sci 112(16):4958–4963

    Article  Google Scholar 

  • Li Q (2016) High-U effect during SIMS Zircon U-Pb dating. Bull Mineral Petrol Geochem 35(3):405–412

    Google Scholar 

  • Li XW, Mo XX, Huang XF, Dong GC, Yu XH, Luo MF, Liu YB (2015) U-Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: petrogenesis and geodynamic implications. J Asian Earth Sci 97:38–50

    Article  Google Scholar 

  • Li W, Xie GQ, Mao JW, Zhu QQ, Zheng JH (2019) Mineralogy, fluid inclusion, and stable isotope studies of the Chengchao deposit, Hubei province, eastern China: Implications for the formation of high-grade Fe skarn deposits. Econ Geol 114(2):325–352

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Loucks R (2014) Distinctive composition of copper-ore-forming arcmagmas. Aust J Earth Sci 61(1):5–16

    Article  Google Scholar 

  • Ludwig K (2012) Isoplot 3.75. A Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Pub. 5

  • Luo BJ, Zhang HF, Xu W, Guo L, Pan FB, Yang H (2015) The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite Batholith. J Petrol 56(6):1139–1172

    Article  Google Scholar 

  • Lyon IC, Kusiak MA, Wirth R, Whitehouse MJ, Dunkley DJ, Wilde SA, Schaumloffel D, Malherbe J, Moore KL (2019) Pb nanospheres in ancient zircon yield model ages for zircon formation and Pb mobilization. Sci Rep 9(1):13702

    Article  Google Scholar 

  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111(5):1187–1222

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World Skarn Deposits. Economic Geology 100th Anniversary Volume, pp 299–336

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. Rev Mineral Geochem 53(1):427–467

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89(1):219–231

    Article  Google Scholar 

  • Nathwani CL, Loader MA, Wilkinson JJ, Buret Y, Sievwright RH, Hollings P (2020) Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology 48(4):323–327

    Article  Google Scholar 

  • O’Sullivan G, Chew D, Morton A, Mark C, Henrichs I (2018) An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochem Geophys Geosyst 19(4):1309–1326

    Article  Google Scholar 

  • Peterman EM, Reddy SM, Saxey DW, Snoeyenbos DR, Rickard WD, Fougerouse D, Kylander-Clark AR (2016) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2(9):e1601318

    Article  Google Scholar 

  • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Mineral 101(11):2430–2442

    Article  Google Scholar 

  • Qiu KF, Deng J (2017) Petrogenesis of granitoids in the Dewulu skarn copper deposit: implications for the evolution of the Paleotethys ocean and mineralization in Western Qinling, China. Ore Geol Rev 90:1078–1098

    Article  Google Scholar 

  • Qiu KF, Yu HC, Wu MQ, Geng JZ, Ge XK, Gou ZY, Taylor RD (2019) Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am Mineral 104(10):1487–1502

    Article  Google Scholar 

  • Qiu KF, Yu HC, Deng J, McIntire D, Gou ZY, Geng JZ, Chang ZS, Zhu R, Li KN, Goldfarb R (2020) The giant Zaozigou Au-Sb deposit in West Qinling, China: magmatic- or metamorphic-hydrothermal origin? Miner Depos 55(2):345–362

    Article  Google Scholar 

  • Qiu KF, Yu HC, Hetherington C, Huang YQ, Yang T, Deng J (2021a) Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am Mineral 106(7):1033–1044

    Article  Google Scholar 

  • Qiu KF, Deng J, Yu HC, Wu MQ, Wang Y, Zhang L, Goldfarb R (2021b) Identifying hydrothermal quartz vein generations in the Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) using cathodoluminescence, trace element geochemistry, and fluid inclusions. Ore Geol Rev 128:103882

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water. Econ Geol 106(7):1075–1081

    Article  Google Scholar 

  • Richards JP, Şengör AC (2017) Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation? Geology 45(7):591–594

    Article  Google Scholar 

  • Rubatto D (2017) Zircon: the metamorphic mineral. Rev Mineral Geochem 83(1):261–295

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of Silicic Magmas. Elements 12(2):109–114

    Article  Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. Econ Geol 100:723–768

    Google Scholar 

  • Sisson T, Grove T (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MS, Morris GA, Nasdala L, Norberg N (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35

    Article  Google Scholar 

  • Spencer CJ, Kirkland CL, Taylor RJM (2016) Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci Front 7(4):581–589

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sui JX, Li JW, Wen G, Jin XY (2017) The Dewulu reduced Au-Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geol Rev 80:1230–1244

    Article  Google Scholar 

  • Szopa K, Sałacińska A, Gumsley AP, Chew D, Petrov P, Gawȩda A, Zagórska A, Deput E, Gospodinov N, Banasik K (2020) Two-stage late Jurassic to early cretaceous hydrothermal activity in the Sakar unit of Southeastern Bulgaria. Minerals 10(3):266

    Article  Google Scholar 

  • Tollan P, Hermann J (2019) Arc magmas oxidised by water dissociation and hydrogen incorporation in orthopyroxene. Nat Geosci 12(8):667–671

    Article  Google Scholar 

  • Uchida E, Endo S, Makino M (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resour Geol 57(1):47–56

    Article  Google Scholar 

  • Utsunomiya S, Palenik CS, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2004) Nanoscale occurrence of Pb in an Archean zircon. Geochim Cosmochim Acta 68(22):4679–4686

    Article  Google Scholar 

  • Valley JW, Reinhard DA, Cavosie AJ, Ushikubo T, Lawrence DF, Larson DJ, Kelly TF, Snoeyenbos DR, Strickland A (2015) Nano-and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am Mineral 100(7):1355–1377

    Article  Google Scholar 

  • White LT, Ireland TR (2012) High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations. Chem Geol 306–307:78–91

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204(3–4):333–346

    Article  Google Scholar 

  • Whitehouse MJ, Kusiak M, Wirth R, Kumar GR (2017) Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India. Mineral Petrol 111(4):467–474

    Article  Google Scholar 

  • Widmann P, Davies J, Schaltegger U (2019) Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and UPb age. Chem Geol 511:1–10

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Fv O, Av Q, Roddick J, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Xian H, Zhu J, Tan W, Tang H, Liu P, Zhu R, Liang X, Wei J, He H, Teng HH (2019) The mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical generation in prebiotic chemistry. Geochim Cosmochim Acta 244:163–172

    Article  Google Scholar 

  • Xu Y, Gu L, Li Y, Mo B, Lin Y (2018) Combination of focused ion beam (FIB) and microtome by ultrathin slice preparation for transmission electron microscopy (TEM) observation. Earth Planets Space 70(1):1–6

    Article  Google Scholar 

  • Yang LQ, Deng J, Dilek Y, Qiu KF, Ji XZ, Li N, Taylor RD, Yu JY (2015a) Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling Orogen, China. Geol Soc Am Bull 11(12):1831–1854

    Article  Google Scholar 

  • Yang LQ, Deng J, Qiu KF, Ji XZ, Santosh M, Song KR, Song YH, Geng JZ, Zhang C, Hua B (2015b) Magma mixing and crust–mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry, and zircon U–Pb–Hf isotopic systematic. J Asian Earth Sci 98:320–341

    Article  Google Scholar 

  • Yu HC, Guo CA, Qiu KF, McIntire D, Jiang GP, Gou ZY, Geng JZ, Pang Y, Zhu R, Li NB (2019) Geochronological and geochemical constraints on the formation of the Giant Zaozigou Au-Sb deposit, West Qinling, China. Minerals 9(1):37

    Article  Google Scholar 

  • Yu HC, Qiu KF, Nassif MT, Geng JZ, Sai SX, Duo DW, Huang YQ, Wang J (2020a) Early orogenic gold mineralization event in the West Qinling related to closure of the Paleo-Tethys Ocean-Constraints from the Ludousou gold deposit, central China. Ore Geol Rev 117:103217

    Article  Google Scholar 

  • Yu HC, Qiu KF, Sai SX, McIntire DC, Pirajno F, Duo DW, Miggins DP, Wang J, Jia RY, Wu MQ (2020b) Paleo-tethys late triassic orogenic gold mineralization recorded by the Yidi’nan gold deposit, West Qinling, China. Ore Geol Rev 116:103211

    Article  Google Scholar 

  • Zhang BT, Wu JQ, Ling HF, Chen PR (2010) Magma-dynamic evidence for indosinian cycle emplacement of the qitianling granite batholith in Nanling range, Sourth China: reply and discussion to comments by Prof. Zhu Jinchu et al. Geol J China Univ 16(3):397

    Google Scholar 

  • Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the Calc-alkaline trend: new volatile data for aleutian magmas and a new Tholeiitic Index. J Petrol 51(12):2411–2444

    Article  Google Scholar 

  • Zou X, Qin K, Han X, Li G, Evans NJ, Li Z, Yang W (2019) Insight into zircon REE oxy-barometers: a lattice strain model perspective. Earth Planet Sci Lett 506:87–96

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Daniela Rubatto at Institut für Geologie Universität Bern Switzerland, Prof. Fernando Corfu at University of Oslo, Prof. Monika Kusiak at Polish Academy of Sciences, and Dr. Yu-Ya Gao and Dr. Jing-Zhao Dou at China Academy of Sciences for thoughtful discussions. Zhi-Bin Xiao and Jia-Run Tu at China Geological Survey, Lin-Fei Qiu at Beijing Research Institute of Uranium Geology and Jia-Xin Xi, Rui Li and Yuan-Jing Wen at Chinese Academy of Sciences provided instruction, advice, and assistance during U-Pb dating, Raman and TEM measurements. This research was financially supported by the National Natural Science Foundation of China (91962106, 42072087, 42111530124, 41702069), the Beijing Nova Program (Z201100006820097), CAS Key Laboratory of Mineralogy and Metallogeny (KLMM20190101), the State Key Laboratory of Ore Deposit Geochemistry (201704) and the 111 Project of the Ministry of Science and Technology (BP0719021). Yu, Huang, and Hetheringtion gratefully acknowledged the support of the Society of Economic Geologists Foundation and the Overseas Experts Exchange Project of China University of Geosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Feng Qiu.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table A.1

Detailed operating parameters and conditions for zircon and apatite U-Pb dating. Table A.2 LA–MC–ICPMS zircon U-Pb isotope data of the Damai granodiorite (17DM06) and Meiwu granodiorite (17MR02) and microgranular enclave (17MR16). Table A.3 Raman data and Corrected 206Pb/238U age of the zircons from the Damai granodiorite (17DM06) and Meiwu granodiorite (17MR02) and microgranular enclave (17MR16). Table A.4 LA–ICPMS apatite U-Pb isotope data of the Meiwu granodiorite (17MR02) and microgranular enclave (17MR16). Table A.5 LA–ICPMS apatite trace element data of the Meiwu granodiorite (17MR02) and microgranular enclave (17MR16). Table A.6 Electron microprobe geochemical data (in weight percent) of biotite grains of the Meiwu granodiorite (17MR02) and microgranular enclave (17MR16). file1 (XLSX 191 KB)

Fig. A.1.

a Outcrop of the Damai stock. bd Granodiorite contains quartz, plagioclase, biotite, amphibole, and K-feldspar of the Damai stock (17DM06). Amp amphibole, Bt biotite, Pl plagioclase, Qz quartz. file2 (PDF 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HC., Qiu, KF., Hetherington, C.J. et al. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib Mineral Petrol 176, 68 (2021). https://doi.org/10.1007/s00410-021-01827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01827-z

Keywords

Navigation