Skip to main content

Advertisement

Log in

Zircon oxygen and hafnium isotope decoupling during regional metamorphism: implications for the generation of low δ18O magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Measurements of U–Th–Pb, Lu–Hf and oxygen isotopes as well as selected trace and rare earth elements were carried out on zircon grains from high-grade metasedimentary rocks from the Albany–Fraser Orogen in southwest Australia. Oxygen isotopes from detrital zircon domains yield δ18O (VSMOW) values ranging from 5.8 to 8.0‰ and exhibit coupled Hf- and O-isotope compositions. In contrast, metamorphic zircon domains show considerably less variability in O-isotope compositions with a median δ18O of 5.6 ± 0.5‰ and exhibit decoupled Hf- and O-isotope compositions. 176Hf/177Hf isotope ratios of metamorphic zircon grains are within the evolutionary trend defined by the detrital grains implying negligible input from external sources during their growth. In addition, the relatively low δ18O value of the metamorphic zircons implies crystallisation from a relatively 18O depleted crustal melt. Such δ18O values are lower than those typically observed in most metamorphic zircon, including those preserved in partial melts of metasediments (10–12‰) and suggest that the sedimentary protolith was hydrothermally altered by meteoric fluids prior to high-temperature metamorphism. We suggest that alteration of the sedimentary protolith is related to the proximity to the Fraser Shear Zone, a major crustal scale structure within the orogen, which may represent an old reactivated structure. Occurrences of low δ18O metamorphic zircon, and potentially also low δ18O igneous rocks, in ancient collisional settings may, therefore, delineate long-lived fluid pathways within the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bindeman IN, Valley JW (2000) Formation of low-delta O-18 rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28:719–722

    Article  Google Scholar 

  • Bindeman IN, Valley JW (2001) Low-delta O-18 rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  • Bindeman IN, Watts KE, Schmitt AK, Morgan LA, Shanks PWC (2007) Voluminous low delta O-18 magmas in the late Miocene Heise volcanic field, Idaho: implications for the fate of Yellowstone hotspot calderas. Geology 35:1019–1022

    Article  Google Scholar 

  • Bindeman I, Schmitt A, Evans D (2010) Limits of hydrosphere-lithosphere interaction: origin of the lowest-known δ18O silicate rock on Earth in the Paleoproterozoic Karelian rift. Geology 38:631–634

    Article  Google Scholar 

  • Bindeman IN, Schmitt AK, Lundstrom CC, Hervig RL (2018) Stability of zircon and its isotopic ratios in high-temperature fluids: long-term (4 months) isotope exchange experiment at 850 °C and 50 MPa. Front Earth Sci 6:59

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bodorkos S, Clark D (2004) Evolution of a crustal-scale transpressive shear zone in the Albany-Fraser Orogen, SW Australia: 2. Tectonic history of the Coramup Gneiss and a kinematic framework for Mesoproterozoic collision of the West Australian and Mawson cratons. J Metamorph Geol 22:713–731

    Article  Google Scholar 

  • Boroughs S, Wolff J, Ellis B, Bonnichsen B, Larson P (2012) Evaluation of models for the origin of Miocene low-δ18O rhyolites of the Yellowstone/Columbia River Large Igneous Province. Earth Planet Sci Lett 313:45–55

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies, developments in geochemistry. Elsevier, Amsterdam, pp 63–114

    Book  Google Scholar 

  • Cavosie AJ, Valley JW, Kita NT, Spicuzza MJ, Ushikubo T, Wilde SA (2011) The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib Miner Petrol 162:961

    Article  Google Scholar 

  • Chu N-C, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574

    Article  Google Scholar 

  • Clark D, Hensen B, Kinny P (2000) Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia. Precambr Res 102:155–183

    Article  Google Scholar 

  • Clark C, Hand M, Faure K, Mumm AS (2006) Up-temperature flow of surface-derived fluids in the mid-crust: the role of pre-orogenic burial of hydrated fault rocks. J Metamorph Geol 24:367–387

    Article  Google Scholar 

  • Clark C, Kirkland CL, Spaggiari CV, Oorschot C, Wingate MTD, Taylor RJ (2014) Proterozoic granulite formation driven by mafic magmatism: an example from the Fraser Range Metamorphics, Western Australia. Precambr Res 240:1–21

    Article  Google Scholar 

  • Collins WJ, Belousova EA, Kemp AIS, Murphy JB (2011) Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nat Geosci 4:333–337

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Dhuime B, Hawkesworth C, Cawood P (2011) When continents formed. Science 331:154–155

    Article  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154:429–437

    Article  Google Scholar 

  • Fisher CM, Vervoort JD, DuFrane SA (2014) Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochem Geophys Geosyst 15:121–139

    Article  Google Scholar 

  • Gébelin A, Mulch A, Teyssier C, Heizler M, Vennemann T, Seaton NC (2011) Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system. Nevada Tectonics 30:TC5010

    Google Scholar 

  • Gébelin A, Teyssier C, Heizler MT, Mulch A (2015) Meteoric water circulation in a rolling-hinge detachment system (northern Snake Range core complex, Nevada). Bulletin 127:149–161

    Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Griffin W, Wang X, Jackson S, Pearson N, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Hammerli J, Kemp AIS, Jeon H (2018) An Archean Yellowstone? Evidence from extremely low δ18O in zircons preserved in granulites of the Yilgarn Craton, Western Australia. Geology 46:411–414

    Article  Google Scholar 

  • Harley SL, Kelly NM, Moller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Harris C, Faure K, Diamond RE, Scheepers R (1997) Oxygen and hydrogen isotope geochemistry of S-and I-type granitoids: the Cape Granite suite, South Africa. Chem Geol 143:95–114

    Article  Google Scholar 

  • Harris C, Mulder K, Sarkar S, Whitehead B, Roopnarain S (2018) Petrogenesis of low-δ18O quartz porphyry dykes, Koegel Fontein complex, South Africa. Contrib Miner Petrol 173:30

    Article  Google Scholar 

  • Hartnady MIH, Kirkland CL, Smithies RH, Poujol M, Clark C (2019) Periodic Paleoproterozoic calc-alkaline magmatism at the south eastern margin of the Yilgarn Craton; implications for Nuna configuration. Precambr Res 332:105400

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Hopkinson TN, Harris NBW, Warren CJ, Spencer CJ, Roberts NMW, Horstwood MSA, Parrish RR, EIMF (2017) The identification and significance of pure sediment-derived granites. Earth Planet Sci Lett 467:57–63

    Article  Google Scholar 

  • Hoskin P, Black L (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Ickert R, Hiess J, Williams I, Holden P, Ireland T, Lanc P, Schram N, Foster J, Clement S (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem Geol 257:114–128

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jaffrés JB, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122

    Article  Google Scholar 

  • Janoušek V, Farrow C, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL, EIMF (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284:455–466

    Article  Google Scholar 

  • Kirkland CL, Spaggiari CV, Pawley M, Wingate MTD, Smithies RH, Howard H, Tyler I, Belousova EA, Poujol M (2011) On the edge: U-Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen. Precambr Res 187:223–247

    Article  Google Scholar 

  • Kirkland CL, Spaggiari CV, Johnson T, Smithies RH, Danišík M, Evans N, Wingate MTD, Clark C, Spencer C, Mikucki E (2016) Grain size matters: implications for element and isotopic mobility in titanite. Precambr Res 278:283–302

    Article  Google Scholar 

  • Kirkland CL, Smithies RH, Spaggiari CV, Wingate MTD, de Gromard RQ, Clark C, Gardiner N, Belousova E (2017) Proterozoic crustal evolution of the Eucla basement, Australia: implications for destruction of oceanic crust during emergence of Nuna. Lithos 278:427–444

    Article  Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol 264:43–57

    Article  Google Scholar 

  • Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mountains, New York. J Metamorph Geol 27:41–54

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf–O isotopes and U-Pb age. Geostand Geoanal Res 34:117–134

    Article  Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Article  Google Scholar 

  • Morel M, Nebel O, Nebel-Jacobsen Y, Miller J, Vroon P (2008) Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem Geol 255:231–235

    Article  Google Scholar 

  • Moser DE, Bowman JR, Wooden J, Valley JW, Mazdab F, Kita N (2008) Creation of a continent recorded in zircon zoning. Geology 36:239–242

    Article  Google Scholar 

  • Paces JB, Miller JD (1993) Precise U-Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J Geophys Res Solid Earth 98:13997–14013

    Article  Google Scholar 

  • Patchett P, Tatsumoto M (1980) Lu–Hf total-rock isochron for the eucrite meteorites. Nature 288:571

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Article  Google Scholar 

  • Pidgeon R (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Miner Petrol 110:463–472

    Article  Google Scholar 

  • Raimondo T, Clark C, Hand M, Cliff J, Anczkiewicz R (2013) A simple mechanism for mid-crustal shear zones to record surface-derived fluid signatures. Geology 41:711–714

    Article  Google Scholar 

  • Rehman HU, Kitajima K, Valley JW, Chung S-L, Lee H-Y, Yamamoto H, Khan T (2018) Low-δ18O mantle-derived magma in Panjal Traps overprinted by hydrothermal alteration and Himalayan UHP metamorphism: revealed by SIMS zircon analysis. Gondwana Res 56:12–22

    Article  Google Scholar 

  • Reimink JR, Chacko T, Stern RA, Heaman LM (2014) Earth’s earliest evolved crust generated in an Iceland-like setting. Nat Geosci 7:529

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rubatto D, Angiboust S (2015) Oxygen isotope record of oceanic and high-pressure metasomatism: a P–T—time–fluid path for the Monviso eclogites (Italy). Contrib Miner Petrol 170:44

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Miner Petrol 140:458–468

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Sippl C, Brisbout L, Spaggiari C, Gessner K, Tkalčić H, Kennett B, Murdie R (2017) Crustal structure of a Proterozoic craton boundary: east Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data. Precambr Res 296:78–92

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MS, Morris GA, Nasdala L, Norberg N (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Smithies R, Kirkland C, Cliff J, Howard H, de Gromard RQ (2015) Syn-volcanic cannibalisation of juvenile felsic crust: superimposed giant 18O-depleted rhyolite systems in the hot and thinned crust of Mesoproterozoic central Australia. Earth Planet Sci Lett 424:15–25

    Article  Google Scholar 

  • Spaggiari C, Occhipinti S, Korsch R, Doublier MP, Clark D, Dentith M, Gessner K, Doyle M, Tyler I, Kennett B, Costelloe R, Fomin T, Holzschuh J (2014) Interpretation of Albany-Fraser seismic line 12GA-AF1, 12GA-AF2 and 12GA-AF3: implications for crustal architecture. In: Spaggiari C, Tyler I (eds) Albany-Fraser Orogen seismic and magnetotelluric (MT) workshop 2014: extended abstracts. Geological Survey of Western Australia, Record 2014/6, pp 28–51

  • Spaggiari CV, Kirkland CL, Smithies RH, Wingate MTD, Belousova EA (2015) Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: the Albany-Fraser Orogen, Western Australia. Precambr Res 266:440–466

    Article  Google Scholar 

  • Spaggiari C, Smithies R, Kirkland C, Wingate M, England R, Lu Y (2018) Buried but preserved: the Proterozoic Arubiddy Ophiolite, Madura Province, Western Australia. Precambr Res 317:137–158

    Article  Google Scholar 

  • Stern RA, Bodorkos S, Kamo SL, Hickman AH, Corfu F (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand Geoanal Res 33:145–168

    Article  Google Scholar 

  • Taylor HP (1977) Water/rock interactions and the origin of H2O in granitic batholiths: thirtieth William Smith lecture. J Geol Soc 133:509–558

    Article  Google Scholar 

  • Taylor RJ, Kirkland CL, Clark C (2016) Accessories after the facts: constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos 264:239–257

    Article  Google Scholar 

  • Thirlwall M, Anczkiewicz R (2004) Multidynamic isotope ratio analysis using MC–ICP–MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int J Mass Spectrom 235:59–81

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Miner Petrol 150:561–580

    Article  Google Scholar 

  • Van Kranendonk MJ, Kirkland CL, Cliff J (2015) Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228:90–98

    Article  Google Scholar 

  • Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146

    Article  Google Scholar 

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148:527–544

    Article  Google Scholar 

  • Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212:158–188

    Article  Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin W, Meier M, Oberli FV, Quadt AV, Roddick J, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135

    Article  Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

  • Zheng YF, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev 62:105–161

    Article  Google Scholar 

  • Zheng YF, Wu YB, Chen FK, Gong B, Li L, Zhao ZF (2004) Zircon U–Pb and oxygen isotope evidence for a large-scale O-18 depletion event in igneous rocks during the neoproterozoic. Geochim Cosmochim Acta 68:4145–4165

    Article  Google Scholar 

  • Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM, Wu FY (2006) Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chem Geol 231:135–158

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank reviewers Adrien Vezinet and Stefan Claesson and journal editor Daniela Rubatto for constructive comments that improved this work. Financial support for this work was provided by the Minerals Research Institute of Western Australia (MRIWA) and GSWA as part of Project M470; Mineral Systems on the Margins of Cratons. MIHH also acknowledges financial support from a Curtin University International Postgraduate Research Scholarship. RHS and CVS publish with permission of the Executive Director of the Geological Survey of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. H. Hartnady.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4667 kb)

Supplementary material 2 (XLSX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartnady, M.I.H., Kirkland, C.L., Martin, L. et al. Zircon oxygen and hafnium isotope decoupling during regional metamorphism: implications for the generation of low δ18O magmas. Contrib Mineral Petrol 175, 9 (2020). https://doi.org/10.1007/s00410-019-1646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1646-7

Keywords

Navigation