Skip to main content
Log in

Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study couples in situ 16O, 17O and 18O isotope and in situ trace element analyses to investigate and characterize the geochemical and textural complexity of magmatic-hydrothermal quartz crystals. Euhedral quartz crystals contemporaneous with mineralization were obtained from four magmatic-hydrothermal ore deposits: El Indio Au–Ag–Cu deposit; Summitville Au–Ag–Cu deposit; North Parkes Cu–Au deposit and Kingsgate quartz-Mo–Bi–W deposit. The internal features of the crystals were imaged using cathodoluminescence and qualitative electron microprobe maps. Quantitative isotopic data were collected in situ using 157 nm laser ablation inductively coupled plasma mass spectrometry (for 40 trace elements in quartz) and sensitive high-resolution ion microprobe (for 3 isotopes in quartz). Imaging revealed fine oscillatory zoning, sector zoning, complex “macromosaic” textures and hidden xenocrystic cores. In situ oxygen isotope analyses revealed a δ18O range of up to 12.4 ± 0.3 ‰ in a single crystal—the largest isotopic range ever ascribed to oscillatory zonation in quartz. Some of these crystals contain a heavier δ18O signature than expected by existing models. While sector-zoned crystals exhibited strong trace element variations between faces, no evidence for anisotropic isotope fractionation was found. We found: (1) isotopic heterogeneity in hydrothermal quartz crystals is common and precludes provenance analysis (e.g., δD–δ18O) using bulk analytical techniques, (2) the trace element signature of quartz is not an effective pathfinder toward noble metal mineralization and (3) in three of the four samples, both textural and isotopic data indicate non-equilibrium deposition of quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The Mineralogical Society of America (http://www.minsocam.org/msa/collectors_corner/faq/faqquartz.htm) defines the term gwindel as a group or often a line of quartz crystals in a cavity that are twisted along the c-axis.

  2. Assuming quartz-water fractionation factors from Matsuhisa et al. (1979) at the minimum formation temperatures obtained using TitaniQ.

  3. We use the terms colloid (e.g., Herrington and Wilkinson 1993); silicothermal fluid (e.g., Wilkinson et al. 1996) and hydrosilicate liquid (e.g., Smirnov et al. 2012) synonymously.

References

  • Akhavan A (2013) Crystals—macroscopic structure. The quartz page. http://www.quartzpage.de/crs_struct.html. Accessed 25 Jan 2013

  • Alexandre A, Basile-Doelsch I, Sonzogni C et al (2006) Oxygen isotope analyses of fine silica grains using laser-extraction technique: comparison with oxygen isotope data obtained from ion microprobe analyses and application to quartzite and silcrete cement investigation. Geochim Cosmochim Acta 70:2827–2835

    Article  Google Scholar 

  • Allan M, Yardley B (2007) Tracking meteoric infiltration into a magmatic-hydrothermal system: a cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chem Geol 240:343–360

    Article  Google Scholar 

  • Arribas A, Cunningham C, Rytuba J et al (1995) Geology, geochronology, fluid inclusions and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ Geol 90:795–822

    Article  Google Scholar 

  • Bernet M, Bassett K (2005) Provenance analysis by single-quartz-grain SEM-CL/optical microscopy. J Sediment Res 75:492–500

    Article  Google Scholar 

  • Bethke P, Rye R, Stoffregen R, Vikre P (2005) Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope and fluid inclusion analysis. Chem Geol 215:281–315

    Article  Google Scholar 

  • Betsi T, Lentz D (2010) The nature of “quartz eyes” hosted by dykes associated with As-Bi-As-Cu, Mo-Cu, and base-metal-Au–Ag mineral occurrences in the Mountain Freegold region (Dawson Range), Yukon, Canada. J Geosci 55:347–368

    Google Scholar 

  • Blatt H (1987) Perspectives; oxygen isotopes and the origin of quartz. J Sediment Petrol 57:373–377

    Article  Google Scholar 

  • Botis S, Pan Y (2009) Theoretical calculation of [AlO4/M+]0 defects in quartz and crystal-chemical controls on the uptake of Al. Mineral Mag 73:537–550

    Article  Google Scholar 

  • Bowles F, Howie R, Vaughan D, Zussman J (2011) Rock-forming minerals: non-silicates: oxides, hydroxides and sulphides v. 5A. Geological Society, London

  • Boyce A, Fulignati P, Sbrana A, Fallick A (2007) Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: a view from the Vulcano active hydrothermal system (Aeolian Island, Italy). J Volcanol Geotherm Res 166:76–90

    Article  Google Scholar 

  • Candela P (1997) A review of shallow, ore-related granites: textures, volatiles and ore metals. J Petrol 38:1619–1633

    Article  Google Scholar 

  • Carstens H (1968) The lineage structure of quartz crystals. Contrib Miner Petrol 18:295–304

    Article  Google Scholar 

  • Chenery S, Cook J (1993) Determination of rare earth elements in single mineral grains by laser ablation microprobe-inductively coupled plasma mass spectrometry—preliminary study. J Anal Atom Spectrom 8:299–303

    Article  Google Scholar 

  • Cherniak D (2002) Ba diffusion in feldspar. Geochim Cosmochim Acta 66:1641–1650

    Article  Google Scholar 

  • Cherniak D, Watson E, Wark D (2007) Ti diffusion in quartz. Chem Geol 236:65–74

    Article  Google Scholar 

  • Chouinard A, Paquette J, Williams-Jones A (2005) Crystallographic controls on trace element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit Chile-Argentina. Can Mineral 43:951–963

    Article  Google Scholar 

  • Clayton R, Mayeda T (2009) Kinetic isotope effects in oxygen in the laboratory dehydration of magnesian minerals. J Phys Chem A 113:2212–2217

    Article  Google Scholar 

  • Dennen W, Blackburn W, Quesada A (1970) Aluminium in quartz as a geothermometer. Contrib Miner Petrol 27:332–342

    Article  Google Scholar 

  • Deyell C, Bissig T, Rye R (2004) Isotopic evidence for magmatic-dominated epithermal processes in El Indio-Pascua Au–Cu–Ag belt and relationship to geomorphologic setting. Soc Econ Geol Spec Publ 11:55–73

    Google Scholar 

  • Deyell C, Leonardson R, Rye R et al (2005) Alunite in the Pascua-Lama high-sulfidation deposit: constraints on alteration and ore deposition using stable isotope geochemistry. Econ Geol 100:131–148

    Article  Google Scholar 

  • Dickson J (1991) Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353:842–844

    Article  Google Scholar 

  • Dowty E (1976) Crystal structure and crystal growth: II. Sector zoning in minerals. Am Mineral 61:460–469

    Google Scholar 

  • Evans N, Davis J, Byrne J, French D (2003) Contamination-free preparation of geological samples for ultra-trace gold and platinum-group element analysis. J Geochem Explor 80:19–24

    Article  Google Scholar 

  • Fiebig J, Wiechert U, Rumble D, Hoefs J (1999) High-precision in situ oxygen isotope analysis of quartz using an ArF laser. Geochim Cosmochim Acta 63:687–702

    Article  Google Scholar 

  • Fournier R (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212

    Article  Google Scholar 

  • Friedlaender C (1952) Structural imperfections in Alpine quartz crystals. Geol Mag 89:217–220

    Article  Google Scholar 

  • Getahun A, Reed M (1993) Chemical composition variation in zoned alteration in the Summitville acid-sulfate system. Annual meeting of the Cordilleran section and the 46th annual meeting of the Rocky Mountain section of the Geological Society of America (GSA), Reno, NV. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5022158. Accessed 25 Jan 2013

  • Goff F, McMurty G (2000) Tritium and stable isotopes of magmatic waters. J Volcanol Geotherm Res 97:347–396

    Article  Google Scholar 

  • Gotze J (2009) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineral Mag 73:645–671

    Article  Google Scholar 

  • Hastie A, Kerr A, Pearce J, Mitchell S (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357

    Article  Google Scholar 

  • Hayashi K-I, Maruyama T, Satoh H (2000) Submillimeter scale variation of oxygen isotope of vein quartz at the Hishikari deposit, Japan. Res Geol 50:141–150

    Article  Google Scholar 

  • Hazen R (2004) Chiral crystal faces of common rock-forming minerals. In: Palyi G, Zucchi C, Caglioti L (eds) Progress in biological chirality. Elselvier, Oxford, pp 137–151

    Chapter  Google Scholar 

  • Hedenquist J, Lowenstern J (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  Google Scholar 

  • Heithersay P, Walshe J (1995) Endeavour 26 North: a porphyry copper-gold deposit in the late Ordovician, shoshonitic Goonumbla Volcanic Complex, New South Wales, Australia. Econ Geol 90:1506–1532

    Article  Google Scholar 

  • Henley R, Berger B (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: chemical controls on alteration and mineralization. Ore Geol Rev 39:75–90

    Article  Google Scholar 

  • Henley R, Ellis A (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Henley R, Mavrogenes J, Tanner D (2012) Sulfosalt melts and heavy metal (As-Sb-Bi-Sn-Pb-Tl) fractionation during volcanic gas expansion: the El Indio (Chile) paleo-fumarole. Geofluids 12:199–215

    Article  Google Scholar 

  • Herrington R, Wilkinson J (1993) Colloidal gold and silica in mesothermal vein systems. Geology 21:539–542

    Article  Google Scholar 

  • Hladky G, Wilkins R (1987) An evaluation of fluid inclusion decrepitometry using quartz from the Kingsgate molybdenite-bismuth deposits, New South Wales, Australia. N Jb Miner Mh 12:537–549

    Google Scholar 

  • Ickert R, Hiess J, Williams I et al (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silica-glass reference materials and zircon from contrasting granites. Chem Geol 257:114–128

    Article  Google Scholar 

  • Imai A, Shimazaki H, Nishizawa T (1998) Hydrogen isotope study of fluid inclusions in vein quartz of the Hishikari Gold deposits, Japan. Res Geol 48:159–170

    Article  Google Scholar 

  • Ireland T, Clement S, Compston W et al (2008) Development of SHRIMP. Aust J Earth Sci 55:937–954

    Article  Google Scholar 

  • Jannas R, Beane R, Ahler B, Brosnahan D (1990) Gold and copper mineralization at the El Indio deposit, Chile. J Geochem Explor 36:233–266

    Article  Google Scholar 

  • Jannas R, Bowers T, Petersen U, Beane R (1999) High-sulfidation deposit types in the El Indio district, Chile. Soc Econ Geol Spec Pub 7:219–266

    Google Scholar 

  • Jourdan A, Venneman T, Mullis J, Ramseyer K (2009a) Oxygen isotope sector zoning in natural hydrothermal quartz. Mineral Mag 73:615–632

    Article  Google Scholar 

  • Jourdan A, Venneman T, Mullis J, Ramseyer K (2009b) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. Eur J Mineral 21:219–231

    Article  Google Scholar 

  • King E, Barrie C, Valley J (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: magmatic values are preserved in zircon. Geology 25:1079–1082

    Article  Google Scholar 

  • Klemm A, Banerjee A, Hoernes A (1990) A new intracrystalline isotope effect: 18O under the faces of amethyst. Z Naturforsch A 45:1374–1376

    Google Scholar 

  • Klemm A, Banerjee A, Hoernes A (1991) Fractionation of oxygen isotopes at the faces of smoky quartz. Z Naturforsch A 46:1133–1134

    Google Scholar 

  • Landtwing M, Pettke T (2005) Relationships between SEM-cathodoluminescence response and trace element composition of hydrothermal vein quartz. Am Mineral 90:122–131

    Article  Google Scholar 

  • Larkin J, Armington A, O’Connor J, Lipson H, Horrigan J (1982) Growth of quartz with high aluminum concentration. J Cryst Growth 60:136–140

    Article  Google Scholar 

  • Larson P, Taylor H (1987) Solfataric alteration in the San Juan Mountains, Colorado: oxygen isotope variations in a boiling hydrothermal environment. Econ Geol 82:1019–1036

    Article  Google Scholar 

  • Lawrence L, Markham N (1962) A contribution to the study of the molybdenite pipes of Kingsgate, N.S.W., with special reference to ore mineralogy. Proc Aust Inst Mineral Metall 203:67–94

    Google Scholar 

  • Le Bas M, Streckeisen A (1991) The IUGS systematics of igneous rocks. J Geol Soc 148:825–833

    Article  Google Scholar 

  • Lickfold V, Cooke D, Smith S, Ullrich T (2003) Endeavour copper-gold porphyry deposits, Northparkes, New South Wales: intrusive history and fluid evolution. Econ Geol 98:1607–1636

    Article  Google Scholar 

  • Lickfold V, Cooke D, Crawford A, Fanning C (2007) Shoshonitic magmatism and the formation of the Northparkes porphyry Cu–Au deposits, New South Wales. Aust J Earth Sci 54:417–444

    Article  Google Scholar 

  • Lynne B, Campbell K, Perry R, Browne P, Moore J (2006) Acceleration of sinter diagenesis in an active fumarole, Taupo volcanic zone, New Zealand. Geology 34:749–752

    Article  Google Scholar 

  • Lynne B, Campbell K, James B, Browne P, Moore J (2007) Tracking crystallinity in siliceous hot-spring deposits. Am J Sci 307:612–641

    Article  Google Scholar 

  • Matsuhisa Y, Goldsmith J, Clayton R (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Article  Google Scholar 

  • Mavrogenes J, Henley R, Reyes A, Berger B (2010) Sulfosalt melts: evidence of high-temperature vapor transport of metals in the formation of high-sulfidation lode gold deposits. Econ Geol 105:257–262

    Article  Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first principles density-functional theory. Geochim Cosmochim Acta 71:3170–3181

    Article  Google Scholar 

  • Mizutani S (1970) Silica minerals in the early stage of diagenesis. Sedimentology 15:419–436

    Article  Google Scholar 

  • Muller A, Herrington R, Armstrong R et al (2010) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner Deposita 45:707–727

    Article  Google Scholar 

  • Munha J, Barriga F, Kerrich R (1986) High 18O ore-forming fluids in volcanic-hosted base metal massive sulfide deposits: Geologic, 18O/16O, and D/H evidence from the Iberian pyrite belt; Crandon, Wisconsin; and Blue Hill, Maine. Econ Geol 81:530–552

    Article  Google Scholar 

  • Northrup P, Reeder R (1994) Evidence for the importance of growth-surface structure to trace element incorporation in topaz. Am Mineral 79:1167–1175

    Google Scholar 

  • Okamoto A, Saishu H, Hirano N, Tsuchiya N (2010) Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: implications for quartz vein formation. Geochim Cosmochim Acta 74:3692–3706

    Article  Google Scholar 

  • Onasch C, Venneman T (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23:1103–1106

    Article  Google Scholar 

  • Paquette J, Reeder R (1990) New type of compositional zoning in calcite: insights into crystal-growth mechanisms. Geology 18:1244–1247

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometer data. J Anal Atom Spectrom 26:2508–2518

    Article  Google Scholar 

  • Penniston-Dorland S (2001) Illumination of vein textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am Mineral 86:652–666

    Google Scholar 

  • Plimer I, Elliott S (1979) The use of Rb/Sr ratios as a guide to mineralization. J Geochem Explor 12:21–34

    Article  Google Scholar 

  • Reeder R, Valley J, Graham C, Eiler J (1997) Ion microprobe study of oxygen isotopic compositions of structurally nonequivalent growth surfaces on synthetic calcite. Geochim Cosmochim Acta 61:5057–5063

    Article  Google Scholar 

  • Rusk B, Lowers H, Reed M (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:546–550

    Article  Google Scholar 

  • Scott K (2005) Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes, New South Wales, Australia. Geochem: Explor Environ, Anal 5:247–253

    Article  Google Scholar 

  • Seyedolali A, Krinsley D, Boggs S et al (1997) Provenance interpretation of quartz by scanning electron microscope—cathodoluminescence fabric analysis. Geology 25:787–790

    Article  Google Scholar 

  • Smirnov S, Thomas V, Kamnetsky V, Kozmenko O, Large R (2012) Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: evaluation of their role in ore and mineral formation at high T and P. Petrol 20:271–285

    Article  Google Scholar 

  • Spandler C, O’Neill H (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications. Contrib Miner Petrol 159:791–818

    Article  Google Scholar 

  • Stevens-Kalceff M (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineral Mag 73:585–605

    Article  Google Scholar 

  • Stoffregen R (1987) Genesis of acid-sulfate alteration and Au–Cu–Ag mineralization at Summitville, Colorado. Geology 82:1575–1591

    Google Scholar 

  • Taylor H (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Article  Google Scholar 

  • Thomas J, Watson B, Spear F et al (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Miner Petrol 160:743–759

    Article  Google Scholar 

  • Valley J, Graham C (1996) Ion microprobe analysis of oxygen isotope ratios in quartz from Skye granite: healed micro-cracks, fluid flow, and hydrothermal exchange. Contrib Miner Petrol 124:225–234

    Article  Google Scholar 

  • Vasyukova O, Goemann K, Kamnetsky V, MacRae C, Wilson N (2013) Cathodoluminescence properties of quartz eyes from porphyry-type deposits: implications for the origin of quartz. Am Mineral 98:98–109

    Article  Google Scholar 

  • Wark D, Watson E (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Miner Petrol 152:743–754

    Article  Google Scholar 

  • Wass S (1973) The origin and petrogenetic significance of hour-glass zoning in titaniferous clinopyroxenes. Mineral Mag 39:133–144

    Article  Google Scholar 

  • Watson E (2004) A conceptual model for near-surface kinetic controls on the trace element and stable isotope composition of abiogenic calcite crystals. Geochim Cosmochim Acta 68:1473–1488

    Article  Google Scholar 

  • Watson E, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80:1179–1187

    Google Scholar 

  • Weatherley D, Henley R (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nat Geosci 6:294–298

    Article  Google Scholar 

  • Weibe R, Wark D, Hawkins D (2007) Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. Contrib Miner Petrol 154:439–453

    Article  Google Scholar 

  • Wilkinson J (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Article  Google Scholar 

  • Wilkinson J, Nolan J, Rankin A (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24:1059–1062

    Article  Google Scholar 

Download references

Acknowledgments

D. Tanner acknowledges the support of an APA scholarship and an SEG student fellowship, as well as the support of her PhD supervisors while she worked abroad. S. Craven is thanked for help with SelFrag®. F. Brink and H. Chen at the Centre for Advanced Microscopy at the Australian National University are thanked for their help in running the FE-SEM. R. Rapp at the Research School of Earth Sciences at the Australian National University is greatly thanked for his help running the EMPA overnight and on weekends. F. Robert and C. Tellez of Barrick Gold Corporation, John Gray (USGS), Northparkes Mines and M. Peacock are thanked for providing samples. The authors acknowledge the Australian Research Council and Newcrest for their financial support. The authors would also like to thank R. Herrington, J. Wilkinson, N. Tailby and A. Akhavan for valuable discussions regarding the data prior to the submission of this manuscript. J. Touret and two anonymous reviewers are thanked for their constructive and thoughtful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Tanner.

Additional information

Communicated by Jaques L.R. Touret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2013_912_MOESM1_ESM.xls

Supplementary Appendix 1: Electronic dataset containing corresponding in situ isotopic and trace element analyses (XLS 249 kb)

410_2013_912_MOESM2_ESM.pdf

Supplementary Appendix 2: Plots showing the concentration and LODs for each individual analysis and every element analyzed (PDF 1371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanner, D., Henley, R.W., Mavrogenes, J.A. et al. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits. Contrib Mineral Petrol 166, 1119–1142 (2013). https://doi.org/10.1007/s00410-013-0912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0912-3

Keywords

Navigation