Skip to main content
Log in

Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation

Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The pressure–temperature (PT) conditions for producing adakite/tonalite–trondhjemite–granodiorite (TTG) magmas from lower crust compositions are still open to debate. We have carried out partial melting experiments of mafic lower crust in the piston-cylinder apparatus at 10–15 kbar and 800–1,050 °C to investigate the major and trace elements of melts and residual minerals and further constrain the PT range appropriate for adakite/TTG formation. The experimental residues include the following: amphibolite (plagioclase + amphibole ± garnet) at 10–15 kbar and 800 °C, garnet granulite (plagioclase + amphibole + garnet + clinopyroxene + orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene granulite (plagioclase + clinopyroxene + orthopyroxene ± amphibole) at 10 kbar and 900 °C and 10–12.5 kbar and 1,000 °C, garnet pyroxenite (garnet + clinopyroxene ± amphibole) at 13.5–15 kbar and 900–1,000 °C, and pyroxenite (clinopyroxene + orthopyroxene) at 15 kbar and 1,050 °C. The partial melts change from granodiorite to tonalite with increasing melt proportions. Sr enrichment occurs in partial melts in equilibrium with <20 wt% plagioclase, whereas depletions of Ti, Sr, and heavy rare earth elements (HREE) occur relative to the starting material when the amounts of residual amphibole, plagioclase, and garnet are >20 wt%, respectively. Major elements and trace element patterns of partial melts produced by 10–40 wt% melting of lower crust composition at 10–12.5 kbar and 800–900 °C and 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO2 contents of the 1,000–1,050 °C melts are higher than that of pristine adakite/TTG. In comparison with natural adakite/TTG, partial melts produced at 10–12.5 kbar and 1,000 °C and 15 kbar and 1,050 °C have elevated HREE, whereas partial melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with >20 wt% garnet have depressed Yb and elevated La/Yb and Gd/Yb. It is suggested that the most appropriate PT conditions for producing adakite/TTG from mafic lower crust are 800–950 °C and 10–12.5 kbar (corresponding to a depth of 30–40 km), whereas a depth of >45–50 km is unfavorable. Consequently, an overthickened crust and eclogite residue are not necessarily required for producing adakite/TTG from lower crust. The lower crust delamination model, which has been embraced for intra-continental adakite/TTG formation, should be reappraised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Adam J, Rushmer T, O’Neil J, Francis D (2012) Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth’s early continent crust. Geology 40:363–366

    Article  Google Scholar 

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Article  Google Scholar 

  • Arth JG (1976) Behaviour of trace elements during magmatic processes-a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47

    Google Scholar 

  • Arth JG, Hanson GN (1972) Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contrib Mineral Petrol 37:161–174

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401

    Article  Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotton J, Silva J, Bourdon E, Eissen JP (2001) Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth Planet Sci Lett 192:561–570

    Article  Google Scholar 

  • Bedard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic modull. Nature 372:452–454

    Article  Google Scholar 

  • Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contrib Mineral Petrol 137:36–45

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett 135:1–11

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Bussod GYA, Williams DR (1991) Thermal and kinematic model of the southern Rio Grande rift: inferences from crustal and mantle xenoliths from Kilbourne Hole, New Mexico. Tectonophysics 197:373–389

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329

    Article  Google Scholar 

  • Clemens JD, Yearron LM, Stevens G (2006) Barberton (South Africa) TTG magmas: geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precamb Res 151:53–78

    Article  Google Scholar 

  • Coldwell B, Clemens J, Petford N (2011) Deep crustal melting in the Peruvian Andes: felsic magma generation during delamination and uplift. Lithos 125:272–286

    Article  Google Scholar 

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • Condie KC, Selverstone J (1999) The crust of the Colorado Plateau: new views of an old arc. J Geol 107:387–397

    Article  Google Scholar 

  • De Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precamb Res 91:181–226

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q, Xiao L (2002) Adakites: some variations on a theme. Acta Petrologica Sinica 18:129–142

    Google Scholar 

  • Diwu CR, Sun Y, Lin CL, Liu XM, Wang HL (2007) Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China. Acta Petrologica Sinica 23:253–262

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archean to modern comparisons. J Geophys Res 95:21503–21521

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Green TH (1982) Anatexis of mafic crust and high pressure crystallization of andesite. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. John Wiley & Sons, New York, pp 465–487

    Google Scholar 

  • Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51:55–62

    Article  Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Mineral Petrol 127:205–223

    Article  Google Scholar 

  • Guo ZF, Wilson M, Liu JQ (2007) Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96:205–224

    Article  Google Scholar 

  • Hacker BR, Gnos E, Ratschbacher L, Grove M, McWilliams M, Sobolev SV, Jiang W, Wu ZH (2000) Hot and dry deep crustal xenoliths from Tibet. Science 287:2463–2466

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Helz RT (1976) Phase relations of basalts in their melting ranges at PH2O = 5 kb. Part II. Melt compositions. J Petrol 17:139–193

    Article  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306

    Article  Google Scholar 

  • Hermnan J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188:149–168

    Article  Google Scholar 

  • Hibberson WO (1978) High pressure and high temperature techniques as applied to experimental petrology. Sci Technol 15(5):22–23

    Google Scholar 

  • Hilyard M, Nielsen RL, Beard JS, Patino-Douce A, Blencoe J (2000) Experimental determination of the partitioning behavior of rare earth and high field strength elements between pargasitic amphibole and natural silicate melts. Geochim Cosmochim Acta 64:1103–1120

    Article  Google Scholar 

  • Hollings P, Kerrich R (2000) An Archean arc basalt-Nb-enriched basalt-adakite association: the 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contrib Mineral Petrol 139:208–226

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Huang F, Li SG, Dong F, He YS, Chen FK (2008) High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust. Chem Geol 255:1–13

    Article  Google Scholar 

  • Huang XL, Niu YL, Xu YG, Yang QJ, Zhong JW (2010) Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion. Precamb Res 182:43–56

    Article  Google Scholar 

  • Hyndman RD, Currie CA, Mazzotti SP (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15:4–10

    Google Scholar 

  • Jahn BM, Liu DY, Wang YS, Song B, Wu JS (2008) Archean crustal evolution of the Jiaodong peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am J Sci 308:232–269

    Article  Google Scholar 

  • Jiang N, Liu YS, Zhou WG, Yang JH, Zhang SQ (2007) Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta 71:2591–2608

    Article  Google Scholar 

  • Jiang N, Guo JH, Zhai MG, Zhang SQ (2010) ~2.7 Ga crust growth in the North China craton. Precamb Res 179:37–49

    Article  Google Scholar 

  • John T, Klemd R, Klemme S, Pfänder JA, Hoffmann JE, Gao J (2011) Nb-Ta fractionation by partial melting at the titantite-rutile transition. Contrib Mineral Petrol 161:35–45

    Article  Google Scholar 

  • Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R, Wijbrans J (2010) Generation of the early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kay RW, Kay SM (2002) Andean adakites: three ways to make them. Acta Petrologica Sinica 18:303–311

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Klein M, Stosch HG, Seck HA (1997) Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental study. Chem Geol 138:257–271

    Article  Google Scholar 

  • Klein M, Stosch HG, Seck HA, Shimizu N (2000) Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochim Cosmochim Acta 64:99–115

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  Google Scholar 

  • Koepke J, Falkenberg G, Rickers K, Diedrich O (2003) Trace element diffusion and element partitioning between garnet and andesite melt using synchrotron X-ray fluorescence microanalysis (μ-SRXRF). Eur J Mineral 15:883–892

    Article  Google Scholar 

  • Lambert IB, Wyllie PJ (1972) Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. J Geol 80:693–708

    Article  Google Scholar 

  • Laurie A, Stevens G (2012) Water-present eclogite melting to produce Earth’s early felsic crust. Chem Geol 314–317:83–95

    Article  Google Scholar 

  • Liu J, Bohlen SR, Ernst WG (1996) Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett 143:161–171

    Article  Google Scholar 

  • Liu YS, Gao S, Jin SY, Hu SH, Sun M, Zhao ZB, Feng JL (2001) Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China Craton: implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta 65:2589–2604

    Article  Google Scholar 

  • Liu YS, Gao S, Liu XM, Chen XM, Zhang WL, Wang XC (2003) Thermodynamic evolution of lithosphere of the North China craton: records from lower crust and upper mantle xenoliths from Hannuoba. Chin Sci Bull 48:2371–2377

    Article  Google Scholar 

  • Liu SW, Pan YM, Xie QL, Zhang J, Li QG (2004) Archean geodynamics in the Central Zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precamb Res 130:229–249

    Article  Google Scholar 

  • Liu SA, Li SG, He YS, Huang F (2010) Geochemical constraints between early cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization. Geochim Cosmochim Acta 74:7160–7178

    Article  Google Scholar 

  • Lopez S, Castro A (2001) Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am Mineral 86:1396–1403

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Article  Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from Eastern Finland: major and trace element geochemistry. J Petrol 28:921–953

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Moyen JF (2002) Secular changes in tonalite—trondhjemite—granodiorite composition as markers of the progressive cooling of earth. Geology 30:319–322

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adkaite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Morris PA (1995) Slab melting as an explanation of quaternary volcanism and aseismicity in southwest Japan. Geology 23:395–398

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic” signature. Lithos 112:556–574

    Article  Google Scholar 

  • Moyen JF (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  • Moyen JF, Stevens G, Kisters AFM, Belcher RW (2007) TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. In: Martin J, Kranindonk V, Smithies H, Bennett VC (ed) Earth’s Oldest Rocks. Developments in Precambrian Geology, Elsevier, pp 607–667

  • Muir RJ, Weaver SD, Bradshaw JD et al (1995) The cretaceous separation point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J Geol Soc Lond 152:689–701

    Article  Google Scholar 

  • Nagel TJ, Hoffmann JE, Münker C (2012) Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology 40:375–378

    Article  Google Scholar 

  • Nair R, Chacko T (2008) Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology 36:583–586

    Article  Google Scholar 

  • Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7:359–373

    Article  Google Scholar 

  • Nath WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Nehring F, Foley SF, Hölttä P, van den Kerkhof AM (2009) Internal differentiation of the Archean continental crust: fluid-controlled partial melting of granulites and TTG-amphibolite associations in Central Finland. J Petrol 50:3–35

    Article  Google Scholar 

  • Nehring F, Foley SF, Hölttä P (2010) Trace element partitioning in the granulite facies. Contrib Mineral Petrol 159:493–519

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1985) A xenolith-derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111:41–63

    Article  Google Scholar 

  • Patino Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Article  Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsl 21:115–144

    Article  Google Scholar 

  • Petford N, Atherton M (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37:1491–1521

    Article  Google Scholar 

  • Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim Cosmochim Acta 34:307–322

    Article  Google Scholar 

  • Polat A, Kerrich R (2001) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contrib Mineral Petrol 141:36–52

    Article  Google Scholar 

  • Polat A, Kusky T, Li JH, Fryer B, Kerrich R, Patrick K (2005) Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for gendynamic setting and continental growth. GSA Bull 117:1387–1399

    Article  Google Scholar 

  • Qian Q, Hermann J (2010) Formation of high-Mg diorites through assimilation of Peridotite by monzodiorite magma at crustal depths. J Petrol 51:1381–1416

    Article  Google Scholar 

  • Rapp RP (1995) Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J Geophys Res 100(B8):15601–15610

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precamb Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Rapp RP, Xiao L, Shimizu N (2002) Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica 18:293–302

    Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425:605–609

    Article  Google Scholar 

  • Rollinson H (2012) Geochemical constraints on the composition of Archaean lower continental crust: partial melting in the Lewisian granulites. Earth Planet Sci Lett 351–352:1–12

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3, the crust, Elsevier, pp 1–64

  • Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59

    Article  Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Sage RP, Lightfoot PC, Doherty W (1996) Geochemical characteristics of granitoid rocks from within the Archean Michipicoten Greenstone Belt, Wawa Subprovince, Superior Province, Canada: implications for source regions and tectonic evolution. Precamb Res 76:155–190

    Article  Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotton J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1010

    Article  Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare earth elements between igneous matrix material and rock-forming mineral phenocrysts-II. Geochim Cosmochim Acta 34:331–340

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409

    Article  Google Scholar 

  • Severs MJ, Beard JS, Fedele L, Hanchar JM, Mutchler SR, Bodnar RJ (2009) Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochim Cosmochim Acta 73:2123–2141

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chacogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117:331–344

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661

    Article  Google Scholar 

  • Skjerlie KP, Patino Douce AE (2002) The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa; Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol 43:291–314

    Article  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precamb Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306

    Article  Google Scholar 

  • Springer W, Seck HA (1997) Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contrib Mineral Petrol 127:30–45

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Article  Google Scholar 

  • Stimac J, Hickmott D (1994) Trace-element partition coefficients for ilmenite, orthopyroxene and pyrrhotite in rhyolite determined by micro-PIXE analysis. Chem Geol 117:313–330

    Article  Google Scholar 

  • Storkey AC, Hermann J, Hand M, Buick IS (2005) Using in situ trace-element determinations to monitor partial-melting processes in metabasites. J Petrol 46:1263–1308

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society, London, pp 313–345

    Google Scholar 

  • Thompson AB, Ellis DJ (1994) CaO + MgO + Al2O3 + SiO2 + H2O to 35 kb: amphibole, talc, and zoisite dehydration and melting reactions in the silica-excess part of the system and their possible significance in subduction zones, amphibolite melting, and magma fractionation. Am J Sci 294:1229–1289

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Turkina OM, Berezhnaya NG, Larionov AN, Lepekhina EN, Presnyakov SL, Saltykova TE (2009) Paleoarchean tonalite-trondhjemite complex in the northwestern part of the Sharyzhalgai uplift (southwestern Siberian craton): results of U-Pb and Sm-Nd study. Russ Geol Geophys 50:15–28

    Article  Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2001) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosys 2: paper 2000GC00133

  • Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33:465–468

    Article  Google Scholar 

  • Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL, Ma JL (2006) Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. J Petrol 47:119–144

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL, He B (2007) Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for late Archean tectonomagmatic processes. J Petrol 43:1551–1570

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2004) Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: implications for late Archean tectonomagmatic processes. Precamb Res 132:303–326

    Article  Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114

    Article  Google Scholar 

  • Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127:43–59

    Article  Google Scholar 

  • Winther KT, Newton RC (1991) Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons. Bull Geo Soc Denmark 39:213–228

    Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

  • Wyllie PJ, Wolf MB (1993) Amphibolite dehydration-melting: sorting out the solidus. In: Alabaster HM, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society Special Publication, No 76, pp 405–416

  • Xiao L, Clemens JD (2007) Origin of potassic (C-type) adakite magmas: experimental and field constraints. Lithos 95:399–414

    Article  Google Scholar 

  • Xiong XL (2006) Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology 34:945–948

    Article  Google Scholar 

  • Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218:339–359

    Article  Google Scholar 

  • Xiong XL, Keppler H, Audetat A, Gudfinnsson G, Sun WD, Song MS, Xiao WS, Yuan L (2009) Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am Mineral 94:1175–1186

    Article  Google Scholar 

  • Xu JF, Shinjo R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114

    Article  Google Scholar 

  • Xu WL, Wang QH, Wang DY, Guo JH, Pei FP (2006) Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci 27:230–240

    Article  Google Scholar 

  • Xu WL, Hergt JM, Gao S, Pei FP, Wang W, Yang DB (2008) Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett 265:123–137

    Article  Google Scholar 

  • Xu WL, Yang DB, Gao S, Pei FP, Yu Y (2010) Geochemistry of peridotite xenoliths in early cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: the nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem Geol 270:257–273

    Article  Google Scholar 

  • Yu SY, Zhang JX, Del Real PG (2012) Geochemistry and zircon U-Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Res 21:167–179

    Article  Google Scholar 

  • Zegers TE, van Keken PE (2001) Middle Archean continent formation by crustal delamination. Geology 29:1083–1086

    Article  Google Scholar 

  • Zhang Q, Qian Q, Wang EQ, Wang Y, Zhao TP, Hao J, Guo GJ (2001) An East China Plateau in mid-late Yanshanian period: implication from adakites. Chinese J Geol 36:248–255 (in Chinese with English abstract)

    Google Scholar 

  • Zhang HF, Parrish R, Zhang L, Xu WC, Yuan HL, Gao S, Crowley QG (2007) A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: implication for lithospheric delamination. Lithos 97:323–335

    Article  Google Scholar 

  • Zhang C, Ma CQ, Holtz F (2010) Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): implications for delamination of the lower continental crust and melt-mantle interaction. Lithos 119:467–484

    Article  Google Scholar 

  • Zhao ZH, Xiong XL, Wang Q, Wyman DA, Bao ZW, Bai ZH, Qiao YL (2008) Underplating-related adakites in Xinjiang Tianshan, China. Lithos 102:374–391

    Article  Google Scholar 

Download references

Acknowledgments

D. Scott, D. Clark and W.O. Hibberson are acknowledged for technical assistance during the piston-cylinder experiments. We are grateful to F. Brink, C. Allen, G. Hunter, H. Cheng, and L. Li for help during the LA-ICP-MS and SEM analyses. R. Rapp, J.J. Yang, J.H. Guo, F. Liu, H.St.C. O’Neill, and T.G. Lan provided constructive suggestions. J. Adam and two anonymous reviewers provided very helpful comments. We thank J. Hoefs for efficient handling of the manuscript. The experiments were funded by the Australian Research Council to J.H. Q.Q. has been financially supported by the National Natural Science Foundation of China [41172065, 90914008, 41023009, 40872057] and the Chinese Academy of Sciences (XDB03010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Qian.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2013_854_MOESM1_ESM.tif

Electronic Appendix 1 (a) Relationship between melt proportion (wt%) estimated by mass balance and by Cs content in melt; (2) Melt proportion (wt%) versus temperature. (TIFF 2,791 kb)

410_2013_854_MOESM2_ESM.tif

Electronic Appendix 2 Si versus temperature (a), and Al (b) and Na (c) versus pressure for clinopyroxene. Si, Al and Na are of per formula unit (pfu). Symbols are the same as in Electronic Appendix 1. Dotted arrows in b and c delineate the variations of Al and Na in clinopyroxene as a function of pressure at 900 °C, respectively. Al content of orthopyroxene is illustrated in b (open star), slightly put to the right for clarity. (TIFF 4,865 kb)

410_2013_854_MOESM3_ESM.tif

Electronic Appendix 3 K2O/Na2O versus melt proportion (by mass balance) for the partial melts. Symbols are the same as in Fig. 5. (TIFF 2,578 kb)

410_2013_854_MOESM4_ESM.tif

Electronic Appendix 4 Onuma diagrams for REE partitioning between amphibole (a), orthopyroxene (b) and garnet (c and d) and the experimental melts. r 0, D0 and E (in GPa) represent optimum radius of the lattice site on which the trace element substitute, strain-free cation partition coefficient, and Young’s Modulus of the lattice site, respectively. r 0, D0 and E values and the curves were obtained by nonlinear least-square fit of the model of Blundy and Wood (1994) to the experimental data, using the eightfold-coordinated ionic radii (Shannon, 1976) for amphibole and garnet and sixfold-coordinated ionic radii for orthopyroxene. (TIFF 8,858 kb)

Supplementary material 5 (DOC 212 kb)

410_2013_854_MOESM6_ESM.tif

Electronic Appendix 6 Comparison of bulk distribution coefficients calculated by Eqs. 2 and 3, for experiments at 10 kbar and 800 °C, 12.5 kbar and 900 °C and 15 kbar and 1,000 °C. The actual melt fractions were used in the calculation. (TIFF 11,282 kb)

410_2013_854_MOESM7_ESM.tif

Electronic Appendix 7 Primitive mantle-normalized spidergrams for modeled melts produced by 20 wt% melting of mafic lower crust (Rudnick and Gao, 2003). \( D_{i}^{\text{bulk}} \) values estimated by Eq. 2 were used in a and b, and that estimated by Eq. 3 were used in c and d. (TIFF 8,922 kb)

Supplementary material 8 (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Q., Hermann, J. Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165, 1195–1224 (2013). https://doi.org/10.1007/s00410-013-0854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0854-9

Keywords

Navigation