Skip to main content
Log in

Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aksu AE, Jenner G, Hiscott RN, Isler EB (2008) Occurrence, stratigraphy and geochemistry of Late Quaternary tephra layers in the Aegean Sea and the Marmara Sea. Mar Geol 252(3–4):174–192

    Article  Google Scholar 

  • Allen SR (2001) Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J Volcanol Geotherm Res 105:141–162

    Article  Google Scholar 

  • Allen SR, McPhie J (2000) Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece. J Volcanol Geotherm Res 95(1–4):285–307

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a PASCAL program to assess equilibria among Fe-Mg-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Bachmann O (2010) The petrologic evolution and pre-eruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean Arc). Cent Eur J Geosci. doi:10.2478/v10085-010-0009-4

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43(8):1469–1503

    Article  Google Scholar 

  • Bachmann O, Charlier BLA, Lowenstern JB (2007) Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean Arc). Geology 35(1):73–76

    Article  Google Scholar 

  • Bachmann O, Wallace P, Bourquin J (2009) The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc). Contrib Mineral Petrol 159(2):187–202

    Article  Google Scholar 

  • Bachmann O, Schoene B, Schnyder C, Spikings R (2010) 40Ar/39Ar and U/Pb dating of young rhyolites in the Kos-Nisyros volcanic complex, Eastern Aegean Arc (Greece): age discordance due to excess 40Ar in biotite. Geochem Geophys Geosyst 11:Q0AA08. doi:10.1029/2010GC003073

  • Bacon RC, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Bea F (2010) Crystallization dynamics of granite magma chambers in the absence of regional stress: multiphysics modeling with natural examples. J Petrol 51(7):1541–1569

    Google Scholar 

  • Bellon H, Jarrige JJ (1979) L’activité magmatique néogene et quaternaire dans l’ile de Kos, Greece: Données radiochronologiques. C R Acad Sci Paris 288:1359–1362

    Google Scholar 

  • Bindeman IN, Valley JW (2001) Low-18O rhyolites from Yellowstone: magmatic evolution based on zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49(1):163–193

    Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Dover publications, New York, p 332

    Google Scholar 

  • Briqueu L, Javoy M, Lancelot JR, Tatsumoto M (1986) Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini—geodynamic implications. Earth Planet Sci Lett 80:41–54

    Article  Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: evidence for >250 k.y. magma residence times. Geology 27(11):1035–1038

    Google Scholar 

  • Buettner A, Kleinhanns IC, Rufer D, Hunziker JC, Villa IM (2005) Magma generation at the easternmost section of the Hellenic arc: Hf, Nd, Pb and Sr isotope geochemistry of Nisyros and Yali volcanoes (Greece). Lithos 83(1–2):29–46

    Article  Google Scholar 

  • Caliro S, Chiodini G, Galluzzo D, Granieri D, La Rocca M, Saccorotti G, Ventura G (2005) Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data. Bull Volcanol 67(4):358–369

    Article  Google Scholar 

  • Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38(12):1619–1633

    Google Scholar 

  • Charlier BLA, Peate DW, Wilson CJN, Lowenstern JB, Storey M, Brown SJA (2003) Crystallisation ages in coeval silicic magma bodies: 238U–230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth Planet Sci Lett 206(3–4):441–457

    Article  Google Scholar 

  • Claiborne LE, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543

    Article  Google Scholar 

  • Claiborne L, Miller C, Wooden J (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol

  • Dabalakis P, Vougioukalakis G (1993) The Kefalos Tuff ring (W. Kos): depositional mechanisms, vent position, and model of the evolution of the eruptive activity. Bull Geol Soc Greece 28(2):259–273

    Google Scholar 

  • Daly RA (1933) Igneous rocks and the depths of the Earth. McGraw Hill, New York

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Di Paola GM (1974) Volcanology and petrology of Nisyros Island (Dodecanese, Greece). Bull Volcanol 38:944–987

    Article  Google Scholar 

  • Dilles JH (1987) The petrology of the Yerington batholith, Nevada: evidence for the evolution of porphyry copper ore fluids. Econ Geol 72:417–425

    Google Scholar 

  • Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 101:245–259

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini volcano, vol 19. Geological Society Memoir, London

    Google Scholar 

  • du Bray EA, Pallister JS (1991) An ash flow caldera in cross section: ongoing field and geochemical studies of the mid-tertiary Turkey Creek Caldera, Chiricahua Mountains, SE Arizona. J Geophys Res 96(B8):13435–13457

    Google Scholar 

  • du Bray EA, Bacon CR, John DA, Wooden JL, Mazdab FK (2010) Episodic intrusion, internal differentiation, and hydrothermal alteration of the Miocene Tatoosh intrusive suite south of Mount Rainier, Washington. Geological Society of America Bulletin

  • Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687–690

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt—crust interaction. J Petrol 46:2167–2195

    Article  Google Scholar 

  • Francalanci L, Varekamp JC, Vougioukalakis G, Defant MJ, Innocenti F, Manetti P (1995) Crystal retention, fractionation and crustal assimilation in a convecting magma chamber, Nisyros Volcano, Greece. Bull Volcanol 56(8):601–620

    Google Scholar 

  • Francalanci L, Varekamp JC, Vougioukalakis GE, Innocenti F, Manetti P (2007) Is there a compositional gap at Nisyros volcano? A comment on: magma generation at the easternmost section of the Hellenic arc: Hf, Nd, Pb and Sr isotope geochemistry of Nisyros and Yali volcanoes (Greece) [Lithos 83 (2005) 29–46]. Lithos 95(3–4):458–461

    Article  Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215

    Article  Google Scholar 

  • Gertisser R, Keller J (2003) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc Magma Genesis. J Petrol 44(3):457–489

    Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. J Petrol 119:197–212

    Google Scholar 

  • Gottsmann J, Rymer H, Wooler LK (2005) On the interpretation of gravity variations in the presence of active hydrothermal systems: Insights from the Nisyros Caldera, Greece. Geophys Res Lett 32:L23310

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carly TL (submitted) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69(2):151–165

    Article  Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136(3–4):169–198

    Article  Google Scholar 

  • Hildreth WS, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–499

    Article  Google Scholar 

  • Hildreth WS, Wilson CJN (2007) Compositional zoning in the Bishop Tuff. J Petrol 48(5):951–999

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chambers by stirring and latent heat buffering. Earth Planet Sci Lett 283:38–47

    Article  Google Scholar 

  • Jackson J (1993) Rates of active deformation in the Eastern Mediterranean. In: Boschi E et al (eds) Recent evolution and seismicity of the mediterranean region. Kluwer, Dordrecht, pp 53–64

    Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448(7154):684–687

    Article  Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Karlstrom L, Dufek J, Manga M (2009) Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic loads. J Geophys Res 114:B10204. doi:10.1029/2009JB006339

    Article  Google Scholar 

  • Keller J (1969) Origin of rhyolites by anatectic melting of granitic crustal rocks; the example of rhyolitic pumice from the island of Kos (Aegean sea). Bulletin Volcanologique 33(3):942–959

    Article  Google Scholar 

  • Koyaguchi T, Kaneko K (1999) A two-stage thermal evolution model of magmas in continental crust. J Petrol 40(2):241–254

    Article  Google Scholar 

  • Lagios E, Sakkas V, Parcharidis I, Dietrich V (2005) Ground deformation of Nisyros Volcano (Greece) for the period 1995–2002: results from DInSAR and DGPS observations. Bull Volcanol 68(2):201–214

    Article  Google Scholar 

  • Lange RA (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506

    Article  Google Scholar 

  • Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthrone FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephensen NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommitee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Limburg EM, Varekamp JC (1991) Young pumice deposits on Nisyros, Greece. Bull Volcanol 54(1):68–77

    Article  Google Scholar 

  • Lipman PW, Dungan MA, Bachmann O (1997) Comagmatic granophyric granite in the Fish Canyon Tuff, Colorado: implications for magma-chamber processes during a large ash-flow eruption. Geology 25(10):915–918

    Article  Google Scholar 

  • Longchamp C, Bonadonna C, Bachmann O, Skopelitis A (2011) Characterization of tephra deposits with limited exposure: the example of the two largest explosive eruptions at Nisyros volcano (Greece). Bull Volcanol 1–16. doi:10.1007/s00445-011-0469-9

  • Mann AC (1983) Trace element geochemistry of high alumina basalt—Andesite—Dacite—Rhyodacite lavas of the Main Volcanic Series of Santorini Volcano, Greece. Contrib Mineral Petrol 84(1):43–57

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Article  Google Scholar 

  • Matsuda J, Senoh K, Maruoka T, Sato H, Mitropoulos P (1999) K-Ar ages of the Aegean volcanic rocks and their implication for the arc-trench system. Geochem J 33:369–377

    Article  Google Scholar 

  • Mitropoulos P, Tarney J (1992) Significance of mineral composition variations in the Aegean Island Arc. J Volcanol Geotherm Res 51:283–303

    Article  Google Scholar 

  • Mitropoulos P, Tarney J, Saunders AD, Marsh NG (1987) Petrogenesis of Cenozoic rocks from the aegean island arc. J Volcanol Geotherm Res 32:177–193

    Article  Google Scholar 

  • Mitropoulos P, Tarney J, Stouraiti C, Notsu K, Arakawa Y (1998) Sr isotopic variations along the Aegean Arc: constraints on magma genesis on the basis of new Sr isotopic data. Bull Geol Soc Greece 32:225–230

    Google Scholar 

  • Mortazavi M, Sparks RSJ (2004) Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: the role of wet basalt in generating calcalkaline silicic magmas. Contrib Mineral Petrol 146(4):397–413

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesitic magma by intrusion of mafic magma at the Soufrière Hills Volcano, Montserrat, West Indies. J Petrol 41(1):21–42

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604

    Article  Google Scholar 

  • Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356:426–428

    Article  Google Scholar 

  • Papadopoulos GA, Sachpazi M, Panopoulou G, Stavrakakis G (1998) The volcanoseismic crisis of 1996–1997 in Nisyros, SE Aegean Sea, Greece. Terra Nova 10(3):151–154

    Article  Google Scholar 

  • Pasteels P, Kolios N, Boven A, Saliba E (1986) Applicability of the K/Ar method to whole-rock samples of acid lava and pumice: case of the Upper Pleistocene domes and pyroclasts on Kos Island, Aegean Sea, Greece. Chem Geol 57(1–2):145–154

    Article  Google Scholar 

  • Pe-Piper G, Moulton B (2008) Magma evolution in the Pliocene-Pleistocene succession of Kos, South Aegean arc (Greece). Lithos 106(1–2):110–124

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece. Gebrüder Borntreager, Berlin, p 573

    Google Scholar 

  • Pe-Piper G, Piper DJW, Perissoratis C (2005) Neotectonics and the Kos Plateau Tuff eruption of 161 ka, South Aegean arc. J Volcanol Geotherm Res 139(3–4):315–338

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F (eds) Minerals, inclusions and volcanic processes, vol 69. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, pp 61–120

    Google Scholar 

  • Reid MR (2008) How long to achieve supersize? Elements 4:23–28

    Article  Google Scholar 

  • Riciputi LR, Johnson CM, Sawyer DA, Lipman PW (1995) Crustal and magmatic evolution in a large multicyclic caldera complex: isotopic evidence from the central San Juan volcanic field. J Volcanol Geotherm Res 67:1–28

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66

    Article  Google Scholar 

  • Rodriguez C, Selles D, Dungan M, Langmuir C, Leeman W (2007) Adakitic Dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi Volcano (36.2 S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48(11):2033–2061

    Google Scholar 

  • Shane P, Smith V, Nairn I (2005) High temperature rhyodacites of the 36 ka Hauparu pyroclastic eruption, Okataina Volcanic Centre, New Zealand: Change in a silicic magmatic system following caldera collapse. J Volcanol Geotherm Res 147:357–376

    Article  Google Scholar 

  • Shimizu A, Sumino H, Nagao K, Notsu K, Mitropoulos P (2005) Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J Volcanol Geotherm Res 140(4):321–339

    Article  Google Scholar 

  • Smith PE, York D, Chen Y, Evensen NM (1996) Single crystal 40Ar/39Ar dating of a late Quaternary paroxysm on Kos, Greece; concordance of terrestrial and marine ages. Geophys Res Lett 23(21):3047–3050

    Article  Google Scholar 

  • Smith PE, Evensen NM, York D (2000) Under the volcano; a new dimension in Ar–Ar dating of volcanic ash. Geophys Res Lett 27(5):585–588

    Article  Google Scholar 

  • Taylor HP (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47:243–254

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2. Geol Soc Am Mem 74:153

    Google Scholar 

  • Vanderkluysen L, Volentik A, Hernandez J, Hunziker JC, Bussy F, Principe C (2006a) The geology, geochemistry and evolution of Nisyros Volcano (Greece). Implications for the volcanic hazards. In: Hunziker JC, Marini L (eds) The petrology and geochemistry of lavas and tephras of Nisyros Volcano (Greece), vol 44. Mémoires de Géologie (Lausanne), Lausanne, p 192

  • Vanderkluysen L, Volentik A, Principe C, Hunziker JC, Hernandez J (2006b) Nisyros’ volcanic evolution: the growth of a strato-volcano. In: Hunziker JC, Marini L (eds) The petrology and geochemistry of lavas and tephras of Nisyros Volcano (Greece), vol 44. Lausanne, Mémoires de Géologie (Lausanne), pp 100–106

    Google Scholar 

  • Vazquez JA, Reid MR (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone caldera, Wyoming. Contrib Mineral Petrol 144(3):274–285

    Article  Google Scholar 

  • Vazquez JA, Reid MR (2004) Probing the accumulation history of the voluminous Toba Magma. Science 305:991–994

    Article  Google Scholar 

  • Vigneresse J-L, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J Petrol 37(6):1579–1600

    Article  Google Scholar 

  • Volentik A, Vanderkluysen L, Principe C, Hunziker JC (2006) Stratigraphy of Nisyros vollcano (Greece). In: Hunziker JC, Marini L (eds) The geology, geochemistry and evolution of Nisyros Volcano (Greece). Implications for the volcanic hazards, vol 44. Mémoires de Géologie (Lausanne), pp 26-66

  • Wagner GJ, Storzer D, Keller J (1976) Spaltspurendatierungen quartarer Gesteinsglaser aus dem Mittelmeerraum. N Jb Miner Mh 2:84–94

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wiebe R, Wark D, Hawkins D (2007) Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. Contrib Mineral Petrol 154(4):439–453

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian Region. Science 290:1910–1917

    Article  Google Scholar 

  • Wyers GP, Barton M (1989) Polybaric evolution of calc-alkaline magmas from Nisyros, southeastern Hellenic Arc, Greece. J Petrol 30:1–37

    Google Scholar 

  • Zellmer GF, Turner SP (2007) Arc dacite genesis pathways: evidence from mafic enclaves and their hosts in Aegean lavas. Lithos 95(3–4):346–362

    Article  Google Scholar 

Download references

Acknowledgments

This paper benefited from the help of a number of persons along the way, from logistical field support (G. Vougioukalakis and K. Kyriakopoulos) to efficient help in the lab (M. Grove with the Stanford-USGS SHRIMP analyses and C. Ginibre with the Lausanne microprobe) to providing constructive and insightful comments on this research (M. Dungan, B. Nelson, P. Lipman, T. Vogel, G. Bergantz, P. Ruprecht). We acknowledge funding from the Lombard fellowship (to Schnyder and Skopelitis), the Swiss National Science foundation (Swiss NSF grant 200021-111709/1 to Bachmann) and the US National Science foundation (NSF EAR grant 0809828 to Bachmann) during the final stages of this paper. We thank Georgia Pe-Piper and an anonymous reviewer for helpful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bachmann.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, O., Deering, C.D., Ruprecht, J.S. et al. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse. Contrib Mineral Petrol 163, 151–166 (2012). https://doi.org/10.1007/s00410-011-0663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0663-y

Keywords

Navigation