Skip to main content

Advertisement

Log in

Viscosity of flux-rich pegmatitic melts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Viscosity experiments were conducted with two flux-rich pegmatitic melts PEG0 and PEG2. The Li2O, F, B2O3 and P2O5 contents of these melts were 1.04, 4.06, 2.30 and 1.68 and 1.68, 5.46, 2.75 and 2.46 wt%, respectively. The water contents varied from dry to 9.04 wt% H2O. The viscosity was determined in internally heated gas pressure vessels using the falling sphere method in the temperature range 873–1,373 K at 200 and 320 MPa pressure. At 1,073 K, the viscosity of water-rich (~9 wt% H2O) melts is in the range of 3–60 Pa s, depending on the melt composition. Extrapolations to lower temperature assuming an Arrhenian behavior indicate that highly fluxed pegmatite melts may reach viscosities of ~30 Pa s at 773 K. However, this value is a minimum estimation considering the strongly non-Arrhenian behavior of hydrous silicate melts. The experimentally determined melt viscosities are lower than the prediction of current models taking compositional parameters into account. Thus, these models need to be improved to predict accurately the viscosity of flux-rich water bearing melts. The data also indicate that Li influences significantly the melt viscosity. Decreasing the molar Al/(Na + K + Li) ratio results in a strong viscosity decrease, and highly fluxed melts with low Al/(Na + K + Li) ratios (~0.8) have a rheological behavior which is very close to that of supercritical fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Audetat A, Keppler H (2004) Viscosity of fluids in subduction zones. Science 303:513–516

    Article  Google Scholar 

  • Baker DR, Vaillancourt J (1995) The low viscosities of F + H2O-bearing granitic melts and implications for melt extraction and transport. Earth Planet Sci Lett 132:199–211

    Article  Google Scholar 

  • Behrens H, Zhang Y (2009) H2O diffusion in peralkaline to peraluminous rhyolitic melts. Contrib Mineral Petrol 157:765–780

    Article  Google Scholar 

  • Behrens H, Romano C, Nowak M, Holtz F, Dingwell DB (1996) Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study. Chem Geol 128:41–63

    Article  Google Scholar 

  • Benne D, Behrens H (2003) Determination of water solubility in haplobasaltic melts using Karl-Fischer titration and IR spectroscopy on quenched glasses. Eur J Mineral 15:803–814

    Article  Google Scholar 

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H-2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726

    Google Scholar 

  • Boettcher SL, Guo Q, Montana A (1989) A simple device for loading gases in high-pressure experiments. Am Mineral 74:1383–1384

    Google Scholar 

  • Boiret M, Urbain G (1987) Mesures de viscosités d’aluminosilicates de lithium. C R Acad Sci Paris série II 305:167–169

    Google Scholar 

  • Černý P (1991) Rare-element granite pegmatites: part I anatomy and internal evolution of pegmatite deposits. Geosci Can 18:49–67

    Google Scholar 

  • Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449

    Google Scholar 

  • Dingwell DB, Knoche R, Webb SL (1992) The effect of B2O3 on the viscosity of haplogranitic liquids. Am Mineral 77:457–461

    Google Scholar 

  • Dingwell DB, Hess KU, Knoche R (1996) Granite and granitic pegmatite melts: volumes and viscosities. Transactions of the Royal Society of Edinburgh. Earth Sci 87:65–72

    Google Scholar 

  • Dingwell DB, Hess K-U, Romano C (1998) Extremely fluid behavior of hydrous peralkaline rhyolites. Earth Planet Sci Lett 158:31–38

    Article  Google Scholar 

  • Faxen H (1923) Die Bewegung einer starren Kugel längs der Achse eines nit zäher Flüssigkeit gefüllten Rohres Arkiv för Mathematik. Astronomi och Fysik 17:1–28

    Google Scholar 

  • Fersmann AE (1931) Ueber die geochemish-genetishe Klassifikation der granitpegmatite. Mineralogische Petrografische Mitteilungen 41:64–83

    Google Scholar 

  • Giordano D, Romano DB, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68:5159–5168

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Hess K-U, Dingwell DB, Webb SL (1995) The influence of excess alkalis on the viscosity of a haplogranitic melt. Am Mineral 80:297–304

    Google Scholar 

  • Hui H, Zhang Y (2007) Towards a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416

    Article  Google Scholar 

  • Jahns RH (1953) The genesis of pegmatites 2 quantitative analysis of lithium-bearing pegmatite, Mora county, New Mexico. Am Mineral 38:1078–1112

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Knoche R, Dingwell DB, Webb SL (1995) Melt densities for leucogranites and granitic pegmatites: partial molar volumes for SiO2, A12O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O-l, TiO2, Nb2O5, Ta2O5, and WO3. Geochim Cosmochim Acta 59:4645–4652

    Article  Google Scholar 

  • Leschik M, Heide G, Frischat GH, Behrens H, Wiedenbeck M, Wagner N, Heide K, Geißler H, Reinholz U (2004) Determination of H2O and D2O contents in rhyolitic glasses using KFT, NRA, EGA, IR spectroscopy, and SIMS. Phys Chem Glasses 45:238–251

    Google Scholar 

  • London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Mineral 30:499–540

    Google Scholar 

  • London D (1999) Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles. Eur J Mineral 11:253–262

    Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 80:281–303

    Article  Google Scholar 

  • London D (2008) Pegmatites. Mineralogical association of Canada, Special publication 10, pp 225

  • London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M, Schmidt M (1996) Viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent. J Geophys Res 101:27691–27699

    Article  Google Scholar 

  • Schulze F, Behrens H, Holtz F, Roux J, Johannes W (1996) The influence of H2O on the viscosity of a haplogranitic melt. Am Mineral 81:1155–1165

    Google Scholar 

  • Shaw HR (1963) Obsidian-H2O viscosities at 100 and 200 bars in temperature range 700 degrees to 900 degrees C. J Geophys Res 68:6337–6343

    Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  • Sirbescu MLC, Nabelek PI (2003) Crustal melts below 400 degrees C. Geology 31:685–688

    Article  Google Scholar 

  • Thomas R, Webster JD (2000) Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita 35:570–582

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683

    Article  Google Scholar 

  • Vetere F, Behrens H, Holtz F, Neuville DR (2006) Viscosity of andesitic melts—new experimental data and a revised calculation model. Chem Geol 228:233–245

    Article  Google Scholar 

  • Webber KL, Falster AU, Simmons WB, Foord EE (1997) The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes. J Petrol 38:1777–1791

    Article  Google Scholar 

  • Whittington AG, Richet P, Behrens H, Holtz F, Scaillet B (2004) Experimental temperature- X(H2O)-viscosity relationship for leucogranites, and comparison with synthetic silicic liquids. Trans Roy Soc Edin Earth Sci 95:59–72

    Article  Google Scholar 

  • Whittington AG, Bouhifd MA, Richet P (2009) The viscosity of hydrous NaAlSi3O8 and granitic melts: Configurational entropy models. Am Mineral 94:1–16

    Google Scholar 

  • Zhang YX, Xu ZJ, Liu Y (2003) Viscosity of hydrous rhyolitic melts inferred from kinetic experiments, and a new viscosity model. Am Mineral 88:1741–1752

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the German Science Foundation (DFG project Be 1720/24). We would like to thank O. Diedrich for preparing the samples and thin sections, Ullrich Kroll, Markus Köhler and Fabian Christ for the technical support as well as Dr. Lothar Borchers from the Hannover Medical School for the help in recording the X-ray images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bartels.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, A., Vetere, F., Holtz, F. et al. Viscosity of flux-rich pegmatitic melts. Contrib Mineral Petrol 162, 51–60 (2011). https://doi.org/10.1007/s00410-010-0582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0582-3

Keywords

Navigation