Skip to main content

Advertisement

Log in

Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535°C in the model system Na2O–CaO–MgO–Al2O3–SiO2

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We determined experimentally the Nernst distribution coefficient \( D_{i}^{{{\text{opx}} - {\text{melt}}}} = \frac{{c_{i}^{\text{orthopyroxene}} }}{{c_{i}^{\text{melt}} }} \) between orthopyroxene and anhydrous silicate melt for trace elements i in the system Na2O–CaO–MgO–Al2O3–SiO2 (NCMAS) along the dry model lherzolite solidus from 1.1 GPa/1,230°C up to 3.2 GPa/1,535°C in a piston cylinder apparatus. Major and trace element composition of melt and orthopyroxene were determined with a combination of electron microprobe and ion probe analyses. We provide partitioning data for trace elements Li, Be, B, K, Sc, Ti, V, Cr, Co, Ni, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Sm, Nd, Yb, Lu, Hf, Ta, Pb, U, and Th. The melts were chosen to be boninitic at 1.1 and 2.0 GPa, picritic at 2.3 GPa and komatiitic at 2.7 and 3.2 GPa. Orthopyroxene is Tschermakitic with 8 mol% Mg-Tschermaks MgAl[AlSiO6] at 1.1 GPa while at higher pressure it has 18–20 mol%. The rare earth elements show a continuous, significant increase in compatibility with decreasing ionic radius from D opx−meltLa  ∼ 0.0008 to D opx−meltLu  ∼ 0.15. For the high-field-strength elements compatibility increases from D opx−meltTh  ∼ 0.001 through D opx−meltNb  ∼ 0.0015, D opx−meltU  ∼ 0.002, D opx−meltTa  ∼ 0.005, D opx−meltZr  ∼ 0.02 and D opx−meltHf  ∼ 0.04 to D opx−meltTi  ∼ 0.14. From mathematical and graphical fits we determined best-fit values for D M10 , D M20 , r M10 , r M20 , E M10 , and E M20 for the two different M sites in orthopyroxene according to the lattice strain model and calculated the intracrystalline distribution between M1 and M2. Our data indicate extreme intracrystalline fractionation for most elements in orthopyroxene; for the divalent cations D M2−M1 i varies by three orders of magnitude between D M2−M1Co  = 0.00098–0.00919 and D M2−M1Ba  = 2.3–28. Trivalent cations Al and Cr almost exclusively substitute on M1 while the other trivalent cations substitute on M2; D M2−M1La reaches extreme values between 6.5 × 107 and 1.4 × 1016. Tetravalent cations Ti, Hf, and Zr almost exclusively substitute on M1 while U and Th exclusively substitute on M2. Our new comprehensive data set can be used for polybaric-polythermal melting models along the Earth’s mantle solidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnes SJ (1986) The distribution of chromium among orthopyroxene, spinel, and silicate liquid at atmospheric pressure. Geochim Cosmochim Acta 50:1889–1909. doi:10.1016/0016-7037(86)90246-2

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109:212–224. doi:10.1007/BF00306480

    Article  Google Scholar 

  • Bédard JH (2007) Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations. Chem Geol 244:263–303. doi:10.1016/j.chemgeo.2007.06.019

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Blundy JD, Brodie J (1997) Modelling mantle melting with variable partition coefficients. Lunar Planet Inst Contrib 921:30–31

    Google Scholar 

  • Blundy JD, Dalton JA (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371. doi:10.1007/s004100000139

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454. doi:10.1038/372452a0

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504. doi:10.1016/S0012-821X(98)00106-X

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253. doi:10.1016/0022-0248(75)90241-9

    Article  Google Scholar 

  • Colson RO, McKay GA, Taylor RA (1988) Temperature and composition dependencies of trace element partitioning: olivine/melt and low-Ca pyroxene/melt. Geochim Cosmochim Acta 52:539–553. doi:10.1016/0016-7037(88)90109-3

    Article  Google Scholar 

  • Devey CW, Hémond C, Stoffers P (2000) Metasomatic reactions between carbonated plume melts and mantle harzburgite: the evidence from Friday and Domingo Seamounts (Juan Fernandez chain, SE Pacific). Contrib Mineral Petrol 139:68–84. doi:10.1007/s004100050574

    Article  Google Scholar 

  • Draper SD, van Westrenen W (2007) Quantifying garnet-melt trace element partitioning using lattice-strain theory: assessment of statistically significant controls and a new predictive model. Contrib Mineral Petrol 154:731–746. doi:10.1007/s00410-007-0235-3

    Article  Google Scholar 

  • Frei D, Liebscher A, Wittenberg A, Shaw CSJ (2003) Crystal chemical controls on rare earth element partitioning between epidote-group minerals and melts: an experimental and theoretical study. Contrib Mineral Petrol 146:192–204. doi:10.1007/s00410-003-0493-7

    Article  Google Scholar 

  • Frost DC, Wood BJ (1995) Experimental measurements of the graphite C–O equilibrium and CO2 fugacities at high temperature and pressure. Contrib Mineral Petrol 121:303–308. doi:10.1007/BF02688245

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes, IV, A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem Geol 117:1–36. doi:10.1016/0009-2541(94)90119-8

    Article  Google Scholar 

  • Green TH, Adam J, Sie SH (1989) Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chem Geol 74:201–216. doi:10.1016/0009-2541(89)90032-6

    Article  Google Scholar 

  • Gudfinnson GH, Presnall DC (1996) Melting relations of model lherzolite in the system CaO-MgO-Al2O3-SiO2 at 2.4–3.4 GPa and the generation of komatiites. J Geophys Res 101:27,701–27709. doi:10.1029/96JB02462

    Article  Google Scholar 

  • Herzberg C, Zhang J (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res 101:8271–8295. doi:10.1029/96JB00170

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215. doi:10.1016/S0024-4937(00)00025-6

    Article  Google Scholar 

  • Hinton RW (1990) Ion microprobe trace-element analysis of silicates. Measurement of multi-element glasses. Chem Geol 83:11–25. doi:10.1016/0009-2541(90)90136-U

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314. doi:10.1016/0012-821X(88)90132-X

    Article  Google Scholar 

  • Jones JH (1995) Experimental trace element partitioning. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. AGU Ref Shelf 3:73–104

  • Kelemen PB, Johnson KTM, Kinzler RJ, Irving AJ (1990) High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature 345:521–524. doi:10.1038/345521a0

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134. doi:10.1016/0012-821X(93)90234-Z

    Article  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) Am experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195. doi:10.1016/0012-821X(93)90221-T

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts, 1, Experiments and methods. J Geophys Res 97:6885–6906. doi:10.1029/91JB02840

    Article  Google Scholar 

  • Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263. doi:10.1016/j.chemgeo.2006.05.005

    Article  Google Scholar 

  • Landwehr D, Blundy J, Chamorro-Perez EM, Hill E, Wood B (2001) U-series disequilibria generated by partial melting of spinel lherzolite. Earth Planet Sci Lett 188:329–348. doi:10.1016/S0012-821X(01)00328-4

    Article  Google Scholar 

  • La Tourette TZ, Kennedy AK, Wasserburg GJ (1993) Thorium–uranium fractionation by garnet: evidence for a deep source and rapid rise of oceanic basalts. Science 261:739–742. doi:10.1126/science.261.5122.739

    Article  Google Scholar 

  • Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL, Gill JB, Williams Q (1994) Compositional controls on the partitioning of U, Th, Ba, Pb, Sr, and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts. Earth Planet Sci Lett 128:407–423. doi:10.1016/0012-821X(94)90159-7

    Article  Google Scholar 

  • Lundstrom CC, Gill J, Williams Q (2000) A geochemical consistent hypothesis for MORB generation. Chem Geol 162:105–126. doi:10.1016/S0009-2541(99)00122-9

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831

    Google Scholar 

  • McKay GA (1989) Partitioning of rare earth elements between major silicate minerals and basaltic melt. In: Lipin B, McKay GA (eds) Geochemistry and mineralogy of the rare earth elements. Rev Mineral 21:45–77

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • Onuma N, Higuchi, H, Wakita H, Nagasawa (1968) Trace element partitioning between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51. doi:10.1016/S0012-821X(68)80010-X

  • Pouchou JL, Pichoir F (1985) “PAP” (∅-ρ-Z) procedure for improved quantitatify microanalysis. In: Amstrong JT (ed) Microbeam analysis. San Francisco Press, California, pp 104–106

    Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709. doi:10.1016/j.gca.2004.06.037

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527. doi:10.1016/j.gca.2006.06.162

    Article  Google Scholar 

  • Purton JA, Allan NL, Blundy JD, Wasserman EA (1996) Isovalent trace element partitioning between minerals and melts: a computer simulation study. Geochim Cosmochim Acta 60:4977–4987. doi:10.1016/S0016-7037(96)00300-6

    Article  Google Scholar 

  • Salters VJM (1996) The generation of mid-ocean ridge basalts from the Hf and Nd perspective. Earth Planet Sci Lett 141:109–123. doi:10.1016/0012-821X(96)00070-2

    Article  Google Scholar 

  • Salters VJM, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem Geophys Geosyst 3(6):2002. doi:10.1029/2001GC000146

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201. doi:10.1016/S0012-821X(00)00004-2

    Article  Google Scholar 

  • Ulmer P (1989) Partitioning of high field strength elements among olivine, pyroxenes, garnet and calcalkaline picrobasalt: experimental results and an application. Annu Rep Dir Geophys Lab 1988/1989:42–47

    Google Scholar 

  • van Westrenen W, Blundy J, Wood B (1999) Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral 84:838–847

    Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2000a) Effect of Fe2+ on garnet-melt trace element partitioning: experiments in FCMAS and quantification of crystal-chemical controls in natural systems. Lithos 53:191–203. doi:10.1016/S0024-4937(00)00024-4

    Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2000b) Atomistic simulation of trace element incorporation into garnets—comparison with experimental garnet-melt partitioning data. Geochim Cosmochim Acta 64:1629–1639. doi:10.1016/S0016-7037(00)00336-7

    Article  Google Scholar 

  • van Westrenen W, Draper DS (2007) Quantifying garnet-melt trace element partitioning using lattice-strain theory: new crystal-chemical and thermodynamic constraints. Contrib Mineral Petrol 154:717–730. doi:10.1007/s00410-007-0222-8

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted mantle lithosphere. J Petrol 39:29–60. doi:10.1093/petrology/39.1.29

    Article  Google Scholar 

  • Walter MJ, Presnall DC (1994) Melting behaviour of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar. J Petrol 35:329–359

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124. doi:10.1007/BF00371501

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181. doi:10.1007/s004100050330

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2003) Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius, cation charge, pressure and temperature. In: Carlson RW (ed) The mantle and core. Treatise Geochem 2:395–424

  • Wood BJ, Blundy JD, Robinson JAC (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim Cosmochim Acta 63:1613–1620. doi:10.1016/S0016-7037(98)00302-0

    Article  Google Scholar 

Download references

Acknowledgments

We thank the DFG for supporting this work by grant number FR 557/17-1 to GF. DF thanks Wilhelm Heinrich for generously granting access to experimental and analytical facilities at the GFZ Potsdam. DF and JB greatly acknowledge access to the NSS Edinburgh ion microprobe facility granted by NERC. We are indebted to John Craven, Simone Kasemann and Richard Hinton for their efforts and help with ion microprobe analysis, and to Oona Appelt (GFZ Potsdam) and Berit Wenzel (University of Copenhagen) for their help with the EMPA. This paper is published with the permission of the Geological Survey of Denmark and Greenland. We thank W. van Westrenen and an anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Franz.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2008_346_MOESM1_ESM.doc

Table EA1: Experimental run conditions and products. Experiments that yielded run products suitable for the determination of opx-melt partition coefficients are marked in bold. PT WP are run conditions reported by Walter and Presnall (1994). Major element composition of starting material for the run at 1.3 GPa was 52.1 wt% SiO2, 19.0 wt% Al2O3, 16.1 wt% MgO, 9.7 wt% CaO and 3.4 wt% Na2O (for others, see Table 1). (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frei, D., Liebscher, A., Franz, G. et al. Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535°C in the model system Na2O–CaO–MgO–Al2O3–SiO2 . Contrib Mineral Petrol 157, 473–490 (2009). https://doi.org/10.1007/s00410-008-0346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0346-5

Keywords

Navigation