Skip to main content
Log in

The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The mechanism of re-equilibration of albite in a hydrothermal fluid has been investigated experimentally using natural albite crystals in an aqueous KCl solution enriched in 18O at 600°C and 2 kbars pressure. The reaction is pseudomorphic and produces a rim of K-feldspar with a sharp interface on a nanoscale which moves into the parent albite with increasing reaction time. Transmission electron microscopy (TEM) diffraction contrast and X-ray powder diffraction (XRD) show that the K-feldspar has a very high defect concentration and a disordered Al, Si distribution, compared to the parent albite. Raman spectroscopy shows a frequency shift of the Si-O-Si bending vibration from ~476 cm−1 in K-feldspar formed in normal 16O aqueous solution to ~457 cm−1 in the K-feldspar formed in 18O-enriched solution, reflecting a mass-related frequency shift due to a high enrichment of 18O in the K-feldspar silicate framework. Raman mapping of the spatial distribution of the frequency shift, and hence 18O content, compared with major element distribution maps, show a 1:1 correspondence between the reaction rim formed by the replacement of albite by K-feldspar, and the oxygen isotope re-equilibration. The textural and chemical characteristics as well as the kinetics of the replacement of albite by K-feldspar are consistent with an interface-coupled dissolution-reprecipitation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bondham J (1967) Structural changes in adularia in hydrolytic environments. Medd Dansk Geol For 17:357–370

    Google Scholar 

  • Brady JB, Yund RA (1983) Interdiffusion of K and Na in alkali feldspars; homogenization experiments. Am Mineral 68:106–111

    Google Scholar 

  • Christoffersen R, Yund RA, Tullis J (1983) Inter-diffusion of K and Na in alkali feldspars; diffusion couple experiments. Am Mineral 68:1126–1133

    Google Scholar 

  • Christophe-Michel-Lévy M (1967) Sur le mécanisme de “l’exchange” Na–K par voie hydrothermale dans l’albite. Bull Soc Fr Min Crist 90:411–413

    Google Scholar 

  • Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. Rev Mineral Geochem 43:83–223. doi:10.2138/gsrmg.43.1.83

    Article  Google Scholar 

  • Cole DR, Larson PB, Riciputi LR, Mora CI (2004) Oxygen isotope zoning profiles in hydrothermally altered feldspars: Estimating the duration of water-rock interaction. Geology 32:29–32. doi:10.1130/G19881.1

    Article  Google Scholar 

  • Elsenheimer D, Valley JW (1993) Submillimeter scale zonation of delta-O-18 in quartz and feldspar, Isle-of-Skye, Scotland. Geochim Cosmochim Acta 57:3669–3676. doi:10.1016/0016-7037(93)90148-P

    Article  Google Scholar 

  • Farver JR, Yund RA (1990) The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar. Geochim Cosmochim Acta 54:2953–2964. doi:10.1016/0016-7037(90)90113-Y

    Article  Google Scholar 

  • Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intergranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14:49–60. doi:10.1127/0935-1221/2002/0014-0049

    Article  Google Scholar 

  • Foland KA (1974) Alkali diffusion in orthoclase. In Hofmann AW, Giletti BJ, Yoder HS, Yund RA (eds) Geochemical Transport and Kinetics. Carnegie Inst Washington Publ 634:77–98

  • Geisler T, Pöml P, Stephan T, Janssen A, Putnis A (2005) Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. Am Mineral 90:1683–1687. doi:10.2138/am.2005.1970

    Article  Google Scholar 

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20. doi:10.1016/S0009-2541(97)00026-0

    Article  Google Scholar 

  • Holdren DR, Speyer PM (1985) pH-dependent changes in the rates and stoichiometry of dissolution of an alkali feldspar at room temperature. Am J Sci 285:994–1026

    Google Scholar 

  • Hovis GL (1997) Volumes of K–Na mixing for low albite-microcline crystalline solutions at elevated temperature—a test of regular solution thermodynamic models. Am Mineral 82:158–164

    Google Scholar 

  • Kroll H, Ribbe PH (1987) Determining (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions—a review. Am Mineral 72:491–506

    Google Scholar 

  • Labotka TC, Cole DR, Fayek M, Riciputi LR, Stadermann FJ (2004) Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution. Am Mineral 89:1822–1825

    Google Scholar 

  • Lagache M, Weisbrod A (1977) The system two alkali feldspars-KCL-NaCl-H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62:77–101. doi:10.1007/BF00371028

    Article  Google Scholar 

  • Laves F (1951) Artificial preparation of microcline. J Geol 59:511–512

    Article  Google Scholar 

  • Lee MR, Parsons I (1997) Dislocation formation and albitization in alkali feldspars from the sharp granite. Am Mineral 82:557–570

    Google Scholar 

  • Matson DW, Sharma SK, Philpotts JA (1986) Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am Mineral 71:694–704

    Google Scholar 

  • McKeown DA (2005) Raman spectroscopy and vibrational analyses of albite -From 25°C through the melting temperature. Am Mineral 90:1506–1517. doi:10.2138/am.2005.1726

    Article  Google Scholar 

  • Mernagh TP (1991) Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J Raman Spectrosc 22:453–457. doi:10.1002/jrs.1250220806

    Article  Google Scholar 

  • Oelkers EH, Schott J (1995) Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochim Cosmochim Acta 59:5039–5053. doi:10.1016/0016-7037(95)00326-6

    Article  Google Scholar 

  • O’Neill JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • Orville PM (1962) Alkali metasomatism and feldspars. Nor Geol Tidsskr 42:283–316

    Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261:201–237

    Google Scholar 

  • Pascal M-L, Roux J (1982) Thermodynamic properties of (Na, K) Cl-H2O solutions between 400°C and 800°C 1–2 kbar. Geochim Cosmochim Acta 46:331–337. doi:10.1016/0016-7037(82)90224-1

    Article  Google Scholar 

  • Poty B, Stalder HA, Weisbrod A (1974) Fluid inclusions studies in quartz from fissures of Western and Central Alps. Schweiz min petr Mitt 54:717–752

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions; from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. doi:10.1180/0026461026650056

    Article  Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786. doi:10.1016/j.jssc.2007.03.023

    Article  Google Scholar 

  • Putnis CV, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C (2007) An experimental study of the replacement of leucite by analcime. Am Mineral 92:19–26. doi:10.2138/am.2007.2249

    Article  Google Scholar 

  • Putnis CV, Tsukamoto K, Nishimura Y (2005) Direct observations of pseudomorphism: compositional and textural evolution at a fluid-solid interface. Am Mineral 90:1909–1912. doi:10.2138/am.2005.1990

    Article  Google Scholar 

  • Putnis CV, Mezger K (2004) A mechanism of mineral replacement: Isotope tracing in the model system KCl-KBr-H2O. Geochim Cosmochim Acta 68:2839–2848. doi:10.1016/j.gca.2003.12.009

    Article  Google Scholar 

  • Rodriguez-Carvajal J (1990) FULLPROF: a program for rietveld refinement and pattern matching analysis, abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, p 127, Toulouse, France

  • Roedder E (1972) The composition of fluid inclusions. USGS Professional Paper 440 Data of geochemistry, 6th edition, Chapter JJ, 164p

  • Salisbury JW, Walter LW, Vergo N (1987) Mid-Infrared (2.1–25  μm) spectra of minerals. 1st edition USGS open file report 87-263

  • Schliestedt M, Matthews A (1987) Cation and oxygen isotope exchange between plagioclase and aqueous chloride solution. Neues Jahrb Min 6:241–248

    Google Scholar 

  • Schwarcz HP (1966) Oxygen isotope fractionation between host and exsolved phases in perthite. Geol Soc Am Bull 77–8:879–882. doi:10.1130/0016-7606(1966)77[879:OIFBHA]2.0.CO;2

    Article  Google Scholar 

  • Smith JV, Artioli G, Kvick A (1986) Low albite NaAlSi3O8 Neutron diffraction study of crystal structure at 13 K. Am Mineral 71:727–733

    Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals 1: crystal structures, physical, chemical and microtextural properties, 828p. Springer, Berlin

  • Taylor HP, Epstein S (1962) Relation between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks II application to petrologic problems. Geol Soc Am Bull 73:675–694. doi:10.1130/0016-7606(1962)73[675:RBORIC]2.0.CO;2

    Article  Google Scholar 

  • Weise P, Schliestedt M (1988) Experimentelle Untersuchungen der Na–K Austauschreaktionen zwischen Alkalifeldspaeten und chloridischen Loesungen. Fortschr Mineral, Beih 66:164

  • Weitz G (1972) Die Struktur des Sanidins bei verschiedenen Ordnungsgraden. Z Kristallogr 136:418–426

    Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib Mineral Petrol 104:507–515. doi:10.1007/BF00306660

    Article  Google Scholar 

  • Xiao Y, Lasaga AC (1994) Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution H+(H3O+) catalysis. Geochim Cosmochim Acta 58:5379–5400. doi:10.1016/0016-7037(94)90237-2

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Peter Schmid-Beurmann who helped with the Rietveld calculations, Arne Janßen and Angelika Breit for the powder X-ray diffraction measurements and Jasper Berndt for the electron microprobe mapping. We are also grateful to Herbert Kroll for his help in calculating the state of Al, Si order. We thank an anonymous reviewer for a possible explanation for the K and 18O enrichment at the reaction interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik R. D. Niedermeier.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedermeier, D.R.D., Putnis, A., Geisler, T. et al. The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions. Contrib Mineral Petrol 157, 65–76 (2009). https://doi.org/10.1007/s00410-008-0320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0320-2

Keywords

Navigation