Skip to main content

Advertisement

Log in

FIZZ2 as a Biomarker for Acute Exacerbation of Chronic Obstructive Pulmonary Disease

  • COPD
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Found in inflammatory zone 2 (FIZZ2) is associated with lung inflammation. The aim of the study was to investigate the expression and utility of FIZZ2 as a marker for chronic obstructive pulmonary disease (COPD).

Methods

Immunohistochemistry was used to detect the expression of FIZZ2 in COPD. The serum concentration of FIZZ2 was measured by enzyme-linked immunosorbent assay and the episodes of acute exacerbations of COPD (AECOPD) in the following year were recorded.

Results

FIZZ2 expression was elevated in bronchial epithelial cells (0.217 ± 0.021 vs 0.099 ± 0.010, p < 0.0001) and negatively correlated with the pulmonary function (FEV1/FVC%) (p = 0.0149) and positively correlated with the smoking index (p = 0.0241). Serum level of FIZZ2 in COPD were significantly higher than that in healthy controls (561.6 ± 70.71 vs 52.24 ± 20.52 pg/ml, p < 0.0001) and increased with the COPD severity. Serum levels of FIZZ2 negatively correlated with the pulmonary function [Forced Vital Capacity (FVC), Forced Expiratory Volume (FEV1), FEV1%, FEV1/FVC) (r =  − 0.3086, − 0.3529, − 0.3343, and − 0.2676, respectively, p = 0.0003, p < 0.0001, p < 0.0001, p = 0.0014). The expression of human serum FIZZ2 was positively correlated with the smoking index (r = 0.2749, p = 0.0015). There was a positive correlation between the FIZZ2 concentration and the frequency of AECOPD episodes in the following year (r = 0.7291, p < 0.0001).

Conclusion

FIZZ2 expression was elevated in patients with COPD and its serum concentration might be a potential biomarker for AECOPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available in the GitHub repository at https://github.com/pivadoc/Surfactant/issues/1.

Abbreviations

FIZZ2:

Found in inflammatory zone 2

COPD:

Chronic obstructive pulmonary disease

CSE:

Cigarette smoke extract

16HBEs:

Human bronchial epithelial

AECOPD:

Acute exacerbations of COPD

BECs:

Bronchial epithelial cells

RELMs:

Resistin-like molecules

ELISA:

Enzyme-linked immunosorbent assay

ANOVA:

Analysis of variance

FEV1:

Forced expiratory volume in one second

FVC:

Forced vital capacity

References

  1. Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M (2013) Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med 187(7):721–727. https://doi.org/10.1164/rccm.201211-2004OC

    Article  PubMed  Google Scholar 

  2. Khakban A, Sin DD, FitzGerald JM, McManus BM, Ng R, Hollander Z et al (2017) The projected epidemic of chronic obstructive pulmonary disease hospitalizations over the next 15 years. A population-based perspective. Am J Respir Crit Care Med 195(3):287–291. https://doi.org/10.1164/rccm.201606-1162PP

    Article  PubMed  Google Scholar 

  3. Maruyama K, Haniu H, Saito N, Matsuda Y, Tsukahara T, Kobayashi S et al (2015) Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. Biomed Res Int 2015:793186. https://doi.org/10.1155/2015/793186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ et al (2015) Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology (Carlton, Vic) 20(5):722–729. https://doi.org/10.1111/resp.12542

    Article  Google Scholar 

  5. Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W et al (2000) FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J 19(15):4046–4055. https://doi.org/10.1093/emboj/19.15.4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asano T, Sakosda H, Fujishiro M, Anai M, Kushiyama A, Horike N et al (2006) Physiological significance of resistin and resistin-like molecules in the inflammatory process and insulin resistance. Curr Diabetes Rev 2(4):449–454. https://doi.org/10.2174/1573399810602040449

    Article  CAS  PubMed  Google Scholar 

  7. Fan C, Johns BA, Su Q, Kolosova IA, Johns RA (2013) Choosing the right antibody for resistin-like molecule (RELM/FIZZ) family members. Histochem Cell Biol 139(4):605–613. https://doi.org/10.1007/s00418-012-1042-0

    Article  CAS  PubMed  Google Scholar 

  8. Fang CL, Yin LJ, Sharma S, Kierstein S, Wu HF, Eid G et al (2015) Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man. Clin Exp Allergy 45(5):940–952. https://doi.org/10.1111/cea.12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu T, Baek HA, Yu H, Lee HJ, Park BH, Ullenbruch M et al (2011) FIZZ2/RELM-β induction and role in pulmonary fibrosis. J Immunol (Baltimore, MD: 1950) 187(1):450–461. https://doi.org/10.4049/jimmunol.1000964

    Article  CAS  Google Scholar 

  10. Lin C, Li X, Luo Q, Yang H, Li L, Zhou Q et al (2017) RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving. Exp Cell Res 351(1):43–50. https://doi.org/10.1016/j.yexcr.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  11. Han L, Song N, Hu X, Zhu A, Wei X, Liu J et al (2020) Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 246:117419. https://doi.org/10.1016/j.lfs.2020.117419

    Article  CAS  PubMed  Google Scholar 

  12. Mishra A, Wang M, Schlotman J, Nikolaidis NM, DeBrosse CW, Karow ML et al (2007) Resistin-like molecule-beta is an allergen-induced cytokine with inflammatory and remodeling activity in the murine lung. Am J Physiol Lung Cell Mol Physiol 293(2):L305–L313. https://doi.org/10.1152/ajplung.00147.2007

    Article  CAS  PubMed  Google Scholar 

  13. Aghajanova L, Altmäe S, Kasvandik S, Salumets A, Stavreus-Evers A, Giudice LC (2016) Stanniocalcin-1 expression in normal human endometrium and dysregulation in endometriosis. Fertil Steril 106(3):681–91.e1. https://doi.org/10.1016/j.fertnstert.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  14. Lin Q, Johns RA (2020) Resistin family proteins in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. https://doi.org/10.1152/ajplung.00040.2020

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chumakov AM, Kubota T, Walter S, Koeffler HP (2004) Identification of murine and human XCP1 genes as C/EBP-epsilon-dependent members of FIZZ/Resistin gene family. Oncogene 23(19):3414–3425. https://doi.org/10.1038/sj.onc.1207126

    Article  CAS  PubMed  Google Scholar 

  16. Ehtesham NZ, Nasiruddin M, Alvi A, Kumar BK, Ahmed N, Peri S et al (2011) Treatment end point determinants for pulmonary tuberculosis: human resistin as a surrogate biomarker. Tuberculosis (Edinb) 91(4):293–299. https://doi.org/10.1016/j.tube.2011.04.007

    Article  CAS  Google Scholar 

  17. Gong WJ, Liu JY, Yin JY, Cui JJ, Xiao D, Zhuo W et al (2018) Resistin facilitates metastasis of lung adenocarcinoma through the TLR4/Src/EGFR/PI3K/NF-κB pathway. Cancer Sci 109(8):2391–2400. https://doi.org/10.1111/cas.13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ballantyne D, Scott H, MacDonald-Wicks L, Gibson PG, Wood LG (2016) Resistin is a predictor of asthma risk and resistin:adiponectin ratio is a negative predictor of lung function in asthma. Clin Exp Allergy 46(8):1056–1065. https://doi.org/10.1111/cea.12742

    Article  CAS  PubMed  Google Scholar 

  19. Dong L, Wang SJ, Camoretti-Mercado B, Li HJ, Chen M, Bi WX (2008) FIZZ1 plays a crucial role in early stage airway remodeling of OVA-induced asthma. J Asthma 45(8):648–653. https://doi.org/10.1080/02770900802126941

    Article  CAS  PubMed  Google Scholar 

  20. Angelini DJ, Su Q, Yamaji-Kegan K, Fan C, Teng X, Hassoun PM et al (2009) Resistin-like molecule-beta in scleroderma-associated pulmonary hypertension. Am J Respir Cell Mol Biol 41(5):553–561. https://doi.org/10.1165/rcmb.2008-0271OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen G, Wang SH, Jang JC, Odegaard JI, Nair MG (2016) Comparison of RELMα and RELMβ single- and double-gene-deficient mice reveals that RELMα expression dictates inflammation and worm expulsion in hookworm infection. Infect Immun 84(4):1100–1111. https://doi.org/10.1128/iai.01479-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV (2017) Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci USA 114(42):11027–11033. https://doi.org/10.1073/pnas.1711395114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He W, Wang ML, Jiang HQ, Steppan CM, Shin ME, Thurnheer MC et al (2003) Bacterial colonization leads to the colonic secretion of RELMbeta/FIZZ2, a novel goblet cell-specific protein. Gastroenterology 125(5):1388–1397. https://doi.org/10.1016/j.gastro.2003.07.009

    Article  CAS  PubMed  Google Scholar 

  24. Madala SK, Edukulla R, Davis KR, Schmidt S, Davidson C, Kitzmiller JA et al (2012) Resistin-like molecule α1 (Fizz1) recruits lung dendritic cells without causing pulmonary fibrosis. Respir Res 13(1):51. https://doi.org/10.1186/1465-9921-13-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LeMessurier KS, Palipane M, Tiwary M, Gavin B, Samarasinghe AE (2018) Chronic features of allergic asthma are enhanced in the absence of resistin-like molecule-beta. Sci Rep 8(1):7061. https://doi.org/10.1038/s41598-018-25321-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okubo H, Kushiyama A, Sakoda H, Nakatsu Y, Iizuka M, Taki N et al (2016) Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice. Sci Rep 6:20157. https://doi.org/10.1038/srep20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cook PC, Jones LH, Jenkins SJ, Wynn TA, Allen JE, MacDonald AS (2012) Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. Proc Natl Acad Sci USA 109(25):9977–9982. https://doi.org/10.1073/pnas.1121231109

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jang JC, Chen G, Wang SH, Barnes MA, Chung JI, Camberis M et al (2015) Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden. PLoS Pathog 11(1):e1004579. https://doi.org/10.1371/journal.ppat.1004579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raes G, De Baetselier P, Noël W, Beschin A, Brombacher F, Hassanzadeh GG (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71(4):597–602

    CAS  PubMed  Google Scholar 

  30. Teng X, Li D, Champion HC, Johns RA (2003) FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res 92(10):1065–1067. https://doi.org/10.1161/01.Res.0000073999.07698.33

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Li H, Chen Q, Liu S (2013) ELMβ expression in the lung tissue of patients with chronic obstructive pulmonary disease. J Jinan Univ (Nat Sci Med Ed) 34(02):198–201

    Google Scholar 

  32. Wei B, Sheng LC (2018) Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease. J Int Med Res 46(9):3890–3902. https://doi.org/10.1177/0300060518781642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang M, Liu H, Li Z, Wang J, Zhang F, Cao K et al (2019) ILC2s induce adaptive Th2-type immunity in acute exacerbation of chronic obstructive pulmonary disease. Mediat Inflamm 2019:3140183. https://doi.org/10.1155/2019/3140183

    Article  CAS  Google Scholar 

  34. Zheng LD, Tong QS, Weng MX, He J, Lv Q, Pu JR et al (2009) Enhanced expression of resistin-like molecule beta in human colon cancer and its clinical significance. Dig Dis Sci 54(2):274–281. https://doi.org/10.1007/s10620-008-0355-2

    Article  CAS  PubMed  Google Scholar 

  35. Zheng L, Weng M, He J, Yang X, Jiang G, Tong Q (2010) Expression of resistin-like molecule beta in gastric cancer: its relationship with clinicopathological parameters and prognosis. Virchows Arch 456(1):53–63. https://doi.org/10.1007/s00428-009-0861-4

    Article  CAS  PubMed  Google Scholar 

  36. Lin Q, Fan C, Skinner JT, Hunter EN, Macdonald AA, Illei PB et al (2019) RELMα Licenses Macrophages for Damage-Associated Molecular Pattern Activation to Instigate Pulmonary Vascular Remodeling. J Immunol (Baltimore, MD: 1950) 203(11):2862–2871. https://doi.org/10.4049/jimmunol.1900535

    Article  CAS  Google Scholar 

  37. Liu T, Jin H, Ullenbruch M, Hu B, Hashimoto N, Moore B et al (2004) Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6. J Immunol (Baltimore, MD: 1950) 173(5):3425–3431. https://doi.org/10.4049/jimmunol.173.5.3425

    Article  CAS  Google Scholar 

  38. Stütz AM, Pickart LA, Trifilieff A, Baumruker T, Prieschl-Strassmayr E, Woisetschläger M (2003) The Th2 cell cytokines IL-4 and IL-13 regulate found in inflammatory zone 1/resistin-like molecule alpha gene expression by a STAT6 and CCAAT/enhancer-binding protein-dependent mechanism. J Immunol (Baltimore, MD: 1950). 170(4):1789–1796. https://doi.org/10.4049/jimmunol.170.4.1789

    Article  Google Scholar 

  39. Pesce JT, Ramalingam TR, Wilson MS, Mentink-Kane MM, Thompson RW, Cheever AW et al (2009) Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog 5(4):e1000393. https://doi.org/10.1371/journal.ppat.1000393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagaev I, Smith U (2001) Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun 285(2):561–564. https://doi.org/10.1006/bbrc.2001.5173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Yunhui Wu, Man Jia, Yaqi Meng, and Jiayan Xu for their experimental technical help.

Funding

There is no research funding source.

Author information

Authors and Affiliations

Authors

Contributions

YZ and XY designed this study; YQ and JZ collected serum samples; YZ conducted experiments, data analysis and interpretation; YZ wrote the manuscript; XY and IMA strictly revised the manuscript. All authors read and approved the final paper.

Corresponding authors

Correspondence to Jun Zhou or Xin Yao.

Ethics declarations

Conflict of interest

Ying Zhou, Xin Yao, Yingying Qiao, Jun Zhou, and Ian M. Adcock have nothing to disclose.

Ethical Approval

The protocol was approved by the ethics committee of The First Affiliated Hospital of Nanjing Medical University (2014-SR-150).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Qiao, Y., Adcock, I.M. et al. FIZZ2 as a Biomarker for Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 199, 629–638 (2021). https://doi.org/10.1007/s00408-021-00483-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-021-00483-1

Keywords

Navigation