Skip to main content

Advertisement

Log in

Inhibition of MicroRNA-214 Alleviates Lung Injury and Inflammation via Increasing FGFR1 Expression in Ventilator-Induced Lung Injury

Lung Aims and scope Submit manuscript

Abstract

Purpose

Ventilator-induced lung injury (VILI) is an additional inflammatory injury caused by mechanical ventilation (MV). This study aimed to determine the effects of microRNA-214 (miR-214) on VILI and its underlying mechanism of action.

Methods

To develop a VILI mouse model, mice were subjected to MV. The expression of miR-214 was detected by qRT-PCR. The macrophages, fibroblasts, epithelial cells, and endothelial cells were isolated from lung tissues by fluorescence-activated cell sorting. The histopathological changes of lung, lung wet/dry weight (W/D) ratio, and myeloperoxidase (MPO) activity were used to evaluate the degree of lung injury. The levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to determine the interactions between miR-214 and FGFR1. Western blot was used to detect the protein expression of FGFR1, p-AKT, and p-PI3K.

Results

The expression of miR-214 was increased in lung tissues and macrophages, fibroblasts, epithelial cells, and endothelial cells isolated from lung tissues in VILI mice. MiR-214 inhibition decreased the histopathological changes of lung, lung W/D ratio, MPO activity, and pro-inflammatory cytokines levels in BALF in VILI mice. FGFR1 was targeted by miR-214. The protein expression of FGFR1 was decreased in VILI mice. Ponatinib (FGFR1 inhibitor) reversed the suppressive effects of miR-214 inhibition on lung injury and inflammation of VILI mice. MiR-214 increased the activity of PI3K/AKT pathway by regulating FGFR1.

Conclusions

Inhibition of miR-214 attenuated lung injury and inflammation in VILI mice by increasing FGFR1 expression, providing a novel therapeutic target for VILI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data in the manuscript is available through the responsible corresponding author.

References

  1. Curley GF, Laffey JG, Zhang H, Slutsky AS (2016) Biotrauma and ventilator-induced lung injury: clinical implications. Chest 150:1109–1117

    Article  PubMed  Google Scholar 

  2. Beitler JR, Malhotra A, Thompson BT (2016) Ventilator-induced Lung Injury. Clin Chest Med 37:633–646

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slutsky AS (2015) History of mechanical ventilation. from vesalius to ventilator-induced lung injury. Am J Respir Crit Care Med 191:1106–1115

    Article  PubMed  Google Scholar 

  4. Mahmoodpoor A, Golzari SE (2014) APRV mode in ventilator induced lung injury (VILI). Advances in Bioscience and Clinical Medicine 2:1–2

    Google Scholar 

  5. Cressoni M, Gotti M, Chiurazzi C et al (2016) Mechanical power and development of ventilator-induced lung injury. Anesthesiology 124:1100–1108

    Article  PubMed  Google Scholar 

  6. Kuipers MT, van der Poll T, Schultz MJ, Wieland CW (2011) Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care 15:235

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li W, Qiu X, Jiang H, Han Y, Wei D, Liu J (2016) Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharmacother 84:1375–1382

    Article  CAS  PubMed  Google Scholar 

  8. Lu W, You R, Yuan X et al (2015) The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell-dependent emphysema. Nat Immunol 16:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dakhlallah D, Batte K, Wang Y et al (2013) Epigenetic regulation of miR-17∼92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 187:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li QL, Ge YL, Li M et al (2017) miR-127 contributes to ventilator-induced lung injury. Mol Med Rep 16:4119–4126

    Article  CAS  PubMed  Google Scholar 

  11. Vaporidi K, Vergadi E, Kaniaris E et al (2012) Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol-Lung Cell Mol Physiol 303:199–207

    Article  Google Scholar 

  12. Liu HT, Tao Y, Chen M et al (2016) Upregulation of MicroRNA-214 contributes to the development of vascular remodeling in hypoxia-induced pulmonary hypertension via targeting CCNL2. Scientific Reports 6:24661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oka S, Furukawa H, Shimada K et al (2017) Plasma miRNA expression profiles in rheumatoid arthritis associated interstitial lung disease. BMC Musculoskelet Disord 18:21

    Article  PubMed  PubMed Central  Google Scholar 

  14. Savary G, Buscot M, Dewaeles E et al (2014) MiR-214-3p, a new fibromiR involved in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 44:1731

    Google Scholar 

  15. Yuan T, Klinkhammer K, Lyu H et al (2020) Temporospatial expression of Fgfr1 and 2 during lung development, homeostasis, and regeneration. Front Pharmacol. 11:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen P, Tang H, Zhang Q et al (2020) Basic fibroblast growth factor (bFGF) protects the blood-brain barrier by binding of FGFR1 and activating the ERK signaling pathway after intra-abdominal hypertension and traumatic brain injury. Med Sci Monit 26:e922009

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Eash J, Olsen A, Breur GJ, Gerrard D, Hannon K (2007) FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskelet Disord 8:32–32

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Haeger SM, Suflita MA et al (2017) Fibroblast growth factor signaling mediates pulmonary endothelial glycocalyx reconstitution. Am J Respir Cell Mol Biol 56:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma S, Grigoryev DN, Easley RB, Ye SQ, Simon BA, Garcia JGN (2006) 33 Bioinformatic class discovery of potential biomarkers in ventilator-associated lung injury. J Invest Med 54:80

    Article  Google Scholar 

  20. Wang Y, Xu CF, Liu YJ et al (2017) Salidroside attenuates ventilation induced lung injury via SIRT1-dependent inhibition of NLRP3 inflammasome. Cell Physiol Biochem 42:34–43

    Article  CAS  PubMed  Google Scholar 

  21. Yan X, Li W, Yang L et al (2018) MiR-135a protects vascular endothelial cells against ventilator-induced lung injury by inhibiting PHLPP2 to ACTIVATE PI3K/Akt pathway. Cell Physiol Biochem 48:1245–1258

    Article  CAS  PubMed  Google Scholar 

  22. Xu B, Wang Y, Li X, Mao Y, Deng X (2018) RNA-sequencing analysis of aberrantly expressed long non-coding RNAs and mRNAs in a mouse model of ventilator-induced lung injury. Mol Med Rep 18:882–892

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cagle LA, Franzi LM, Linderholm AL, Adams JY, Harper RW, Kenyon NJ (2017) Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model. PLoS ONE 12:20

    Article  Google Scholar 

  24. Zhang N, Zhang Y, Wang L et al (2019) Expression profiling analysis of long noncoding RNAs in a mouse model of ventilator-induced lung injury indicating potential roles in inflammation. J Cell Biochem 120:11660–11679

    Article  CAS  PubMed Central  Google Scholar 

  25. Ye L, Zeng Q, Dai H et al (2020) Endoplasmic reticulum stress is involved in ventilator-induced lung injury in mice via the IRE1α-TRAF2-NF-κB pathway. Int Immunopharmacol 78:106069

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q, Xie W, Wang Y et al (2019) JAK2/STAT1-mediated HMGB1 translocation increases inflammation and cell death in a ventilator-induced lung injury model. Lab Invest 99:1810–1821

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Ji H, Wang Y et al (2019) Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxidat Med Cell Longevs 2019:4087298

    Google Scholar 

  28. Liu Y, Guan H, Zhang J et al (2018) Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am J Physiol-Cell Physiol 314:C449–C455

    Article  CAS  PubMed  Google Scholar 

  29. Mao P, Li J, Huang Y et al (2017) MicroRNA-19b mediates lung epithelial-mesenchymal transition via phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase in response to mechanical stretch. Am J Respir Cell Mol Biol 56:11–19

    Article  CAS  PubMed  Google Scholar 

  30. Stevens HC, Deng L, Grant JS et al (2016) Regulation and function of miR-214 in pulmonary arterial hypertension. Pulm Circ 6:109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou S, Li M, Zeng D et al (2015) A single nucleotide polymorphism in 3’ untranslated region of epithelial growth factor receptor confers risk for pulmonary hypertension in chronic obstructive pulmonary disease. Cell Physiol Biochem 36:166–178

    Article  PubMed  Google Scholar 

  32. Cai Z, Zhang S, Zhang Y, Zhou Y, Wu H, Xu X (2012) MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol 90:37–43

    Article  CAS  PubMed  Google Scholar 

  33. Tuerdi B, Zuo L, Ma Y, Wang K (2018) Downregulation of miR-155 attenuates sepsis-induced acute lung injury by targeting SIRT1. Int J Clin Exp Pathol 11:4483

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu LL, Zhu M, Huang Y et al (2018) Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression. Eur Rev Med Pharmacol Sci 22:5355

    PubMed  Google Scholar 

  35. Xing X, Li B, Xu S, Liu J, Zhang C, Yang J (2019) MicroRNA-214-3p regulates hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration by targeting ARHGEF12. Med Sci Monit 25:5738–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Long H, Wang Z, Chen J et al (2015) microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget 6:38705–38718

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang S, Dai H, Zhu L et al (2018) Microvesicles packaging IL-1β and TNF-α enhance lung inflammatory response to mechanical ventilation in part by induction of cofilin signaling. Int Immunopharmacol 63:74–83

    Article  CAS  PubMed  Google Scholar 

  38. Xie W, Lu Q, Wang K et al (2018) miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol 233:6615–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao J, Chen C, Guo M et al (2016) MicroRNA-7 deficiency ameliorates the pathologies of acute lung injury through elevating KLF4. Frontiers in Immunology 7:389–389

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bai M, Chen H, Ding D et al (2019) MicroRNA-214 promotes chronic kidney disease by disrupting mitochondrial oxidative phosphorylation. Kidney Int 95:1389–1404

    Article  CAS  PubMed  Google Scholar 

  41. Zheng D, Zang Y, Xu H et al (2018) MicroRNA-214 promotes the calcification of human aortic valve interstitial cells through the acceleration of inflammatory reactions with activated MyD88/NF-κB signaling. Clin Res Cardiol 108:691–702

    Article  PubMed  Google Scholar 

  42. Krajisnik T, Olauson H, Mirza MA et al (2010) Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int 78:1024–1032

    Article  CAS  PubMed  Google Scholar 

  43. Turner CA, Calvo N, Frost DO, Akil H, Watson SJ (2008) The fibroblast growth factor system is downregulated following social defeat. Neurosci Lett 430:147–150

    Article  CAS  PubMed  Google Scholar 

  44. MacKenzie B, Korfei M, Henneke I et al (2015) Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 16:83

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fagel DM, Ganat Y, Cheng E et al (2009) Fgfr1 is required for cortical regeneration and repair after perinatal hypoxia. J Neurosci 29:1202–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang C, Wang C, Ye M et al (2012) Control of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress. Nutr Metab 9:94–94

    Article  CAS  Google Scholar 

  47. Jiang XL, Du BX, Chen J, Liu L, Shao WB, Song J (2014) MicroRNA-34a negatively regulates anesthesia-induced hippocampal apoptosis and memory impairment through FGFR1. Int J Clin Exp Pathol 7:6760–6767

    PubMed  PubMed Central  Google Scholar 

  48. Hu Y, Liu HX, Jena PK, Sheng L, Ali MR, Wan YY (2020) miR-22 inhibition reduces hepatic steatosis via FGF21 and FGFR1 induction. JHEP Rep 2:100093

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang Y, Li Z, Yuan H et al (2019) Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis 8:50

    Article  PubMed  PubMed Central  Google Scholar 

  50. Katoh M (2014) Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2:61–61

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang L, Ge D, Cao X et al (2016) MiR-214 Attenuates Osteogenic differentiation of mesenchymal stem cells via targeting FGFR1. Cell Physiol Biochem 38:809–820

    Article  CAS  PubMed  Google Scholar 

  52. Li LF, Liu YY, Yang CT et al (2013) Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials 34:78–91

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KH: conception and design and analysis of data. KH and SH: drafting the article. LA and JZ: revising the article critically for important intellectual content. JZ: contributed to the conception of the study. KH and LA: performed the data analyses and wrote the manuscript; SH and JZ: helped perform the analysis with constructive discussions. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Li An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the ethics committee of The Fourth Hospital of Shijiazhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Han, S., An, L. et al. Inhibition of MicroRNA-214 Alleviates Lung Injury and Inflammation via Increasing FGFR1 Expression in Ventilator-Induced Lung Injury. Lung 199, 63–72 (2021). https://doi.org/10.1007/s00408-020-00415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-020-00415-5

Keywords

Navigation