Skip to main content
Log in

Evaluation of Renin and Soluble (Pro)renin Receptor in Patients with IPF. A Comparison with Hypersensitivity Pneumonitis

  • Interstitial Lung Disease
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an unclear pathogenic mechanism. Components of the renin–angiotensin system (RAS) have a role in the pathogenesis of IPF, specifically, the aspartyl protease renin acts as a profibrotic factor in the lung. However, the concentration of the RAS components renin and soluble (pro)renin receptor (sPRR) have not been previously evaluated neither in serum nor in bronchoalveolar lavage fluid (BAL) of patients with IPF or chronic Hypersensitivity pneumonitis (cHP), a disease which may be confused with IPF.

Methods

The serum levels of renin [IPF patients (n = 70), cHP patients (n = 83), and controls (n = 26)] and sPRR [IPF (n = 28), cHP (37), and controls (n = 20)] were measured by ELISA. Renin was also quantified in BALs of IPF patients and controls by Western blot.

Results

We found that the levels of renin were higher in serum samples from IPF patients when compared with cHP patients and controls. Furthermore, BALs from IPF patients had more renin than BALs from controls. Unlike renin, the serum levels of sPRR were lower in IPF and cHP patients than in control individuals.

Conclusions

The high levels of renin in sera and BALs of IPF patients suggest that renin might play a major role in the pathogenesis of IPF. Results from BAL confirm that renin is produced locally in the lung. Serum levels of renin could be used to differentiate IPF from cHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IPF:

Idiopathic pulmonary fibrosis

cHP:

Hypersensitivity pneumonitis

BAL:

Bronchoalveolar lavage fluid

EMT:

Epithelial to mesenchymal

sPRR:

Soluble (pro)renin receptor

PRR:

(Pro)renin receptor

RAS:

Renin–angiotensin system

References

  1. Ley B, Brown KK, Collard HR (2014) Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 307(9):L681–L691. https://doi.org/10.1152/ajplung.00014.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(4):431–440. https://doi.org/10.1164/rccm.201006-0894CI

    Article  PubMed  Google Scholar 

  3. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H, Wells AU (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3:17074. https://doi.org/10.1038/nrdp.2017.74

    Article  PubMed  Google Scholar 

  4. Eickelberg O, Kohler E, Reichenberger F, Bertschin S, Woodtli T, Erne P, Perruchoud AP, Roth M (1999) Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-beta1 and TGF-beta3. Am J Physiol 276(5 Pt 1):L814–L824

    CAS  PubMed  Google Scholar 

  5. Fine A, Goldstein RH (1987) The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 262(8):3897–3902

    CAS  PubMed  Google Scholar 

  6. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534. https://doi.org/10.1152/ajplung.00163.2007

    Article  CAS  PubMed  Google Scholar 

  7. Uhal BD, Kim JK, Li X, Molina-Molina M (2007) Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des 13(12):1247–1256

    Article  CAS  Google Scholar 

  8. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69(1):105–113. https://doi.org/10.1038/sj.ki.5000011

    Article  CAS  PubMed  Google Scholar 

  9. Saris JJ, t Hoen PA, Garrelds IM, Dekkers DH, den Dunnen JT, Lamers JM, Jan Danser AH (2006) Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II. Hypertension 48(4):564–571. https://doi.org/10.1161/01.HYP.0000240064.19301.1b

    Article  CAS  PubMed  Google Scholar 

  10. Montes E, Ruiz V, Checa M, Maldonado V, Melendez-Zajgla J, Montano M, Ordonez-Razo R, Cisneros J, Garcia-de-Alba C, Pardo A, Selman M (2012) Renin is an angiotensin-independent profibrotic mediator: role in pulmonary fibrosis. Eur Respir J 39(1):141–148. https://doi.org/10.1183/09031936.00130310

    Article  CAS  PubMed  Google Scholar 

  11. Burckle C, Bader M (2006) Prorenin and its ancient receptor. Hypertension 48(4):549–551. https://doi.org/10.1161/01.HYP.0000241132.48495.df

    Article  CAS  PubMed  Google Scholar 

  12. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53(6):1077–1082. https://doi.org/10.1161/HYPERTENSIONAHA.108.127258

    Article  CAS  Google Scholar 

  13. Sugulle M, Heidecke H, Maschke U, Herse F, Danser AHJ, Mueller DN, Staff AC, Dechend R (2017) Soluble (pro)renin receptor in preeclampsia and diabetic pregnancies. J Am Soc Hypertens 11(10):644–652. https://doi.org/10.1016/j.jash.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Bonakdaran S, Azami G, Tara F, Poorali L (2017) Soluble (pro)renin receptor is a predictor of gestational diabetes mellitus. Curr Diabetes Rev 13(6):555–559. https://doi.org/10.2174/1573399812666160919100253

    Article  CAS  PubMed  Google Scholar 

  15. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183(6):788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4(9):429–434. https://doi.org/10.4103/1947-2714.100998

    Article  PubMed  PubMed Central  Google Scholar 

  17. Buendia-Roldan I, Ruiz V, Sierra P, Montes E, Ramirez R, Vega A, Salgado A, Vargas MH, Mejia M, Pardo A, Selman M (2016) Increased expression of CC16 in patients with idiopathic pulmonary fibrosis. PLoS ONE 11(12):e0168552. https://doi.org/10.1371/journal.pone.0168552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosas IO, Richards TJ, Konishi K, Zhang Y, Gibson K, Lokshin AE, Lindell KO, Cisneros J, Macdonald SD, Pardo A, Sciurba F, Dauber J, Selman M, Gochuico BR, Kaminski N (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5(4):e93. https://doi.org/10.1371/journal.pmed.0050093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greene KE, King TE Jr, Kuroki Y, Bucher-Bartelson B, Hunninghake GW, Newman LS, Nagae H, Mason RJ (2002) Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis. Eur Respir J 19(3):439–446

    Article  CAS  Google Scholar 

  20. Hamai K, Iwamoto H, Ishikawa N, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N, Kohno N (2016) Comparative study of circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as disease markers of idiopathic pulmonary fibrosis. Dis Markers 2016:4759040. https://doi.org/10.1155/2016/4759040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Bi L, Qiu Y, Wang Y, Ding J, Zhuang Y, Tian Y, Cai H (2016) Elevated sL1-CAM levels in BALF and serum of IPF patients. Respirology 21(1):143–148. https://doi.org/10.1111/resp.12659

    Article  PubMed  Google Scholar 

  22. Huang Y, Noble NA, Zhang J, Xu C, Border WA (2007) Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72(1):45–52. https://doi.org/10.1038/sj.ki.5002243

    Article  CAS  PubMed  Google Scholar 

  23. Narumi K, Hirose T, Sato E, Mori T, Kisu K, Ishikawa M, Totsune K, Ishii T, Ichihara A, Nguyen G, Sato H, Ito S (2015) A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am J Physiol Ren Physiol 308(5):F487–F499. https://doi.org/10.1152/ajprenal.00206.2014

    Article  CAS  Google Scholar 

  24. Byrne AJ, Maher TM, Lloyd CM (2016) Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22(4):303–316. https://doi.org/10.1016/j.molmed.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Papiris SA, Kollintza A, Kitsanta P, Kapotsis G, Karatza M, Milic-Emili J, Roussos C, Daniil Z (2005) Relationship of BAL and lung tissue CD4+ and CD8+ T lymphocytes, and their ratio in idiopathic pulmonary fibrosis. Chest 128(4):2971–2977. https://doi.org/10.1378/chest.128.4.2971

    Article  PubMed  Google Scholar 

  26. Esposito I, Perna F, Ponticiello A, Perrella M, Gilli M, Sanduzzi A (2005) Natural killer cells in Bal and peripheral blood of patients with idiopathic pulmonary fibrosis (IPF). Int J Immunopathol Pharmacol 18(3):541–545. https://doi.org/10.1177/039463200501800314

    Article  CAS  PubMed  Google Scholar 

  27. Melnyk RA, Tam J, Boie Y, Kennedy BP, Percival MD (2009) Renin and prorenin activate pathways implicated in organ damage in human mesangial cells independent of angiotensin II production. Am J Nephrol 30(3):232–243. https://doi.org/10.1159/000220260

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen G, Blanchard A, Curis E, Bergerot D, Chambon Y, Hirose T, Caumont-Prim A, Tabard SB, Baron S, Frank M, Totsune K, Azizi M (2014) Plasma soluble (pro)renin receptor is independent of plasma renin, prorenin, and aldosterone concentrations but is affected by ethnicity. Hypertension 63(2):297–302. https://doi.org/10.1161/HYPERTENSIONAHA.113.02217

    Article  CAS  PubMed  Google Scholar 

  29. Lu X, Wang F, Xu C, Soodvilai S, Peng K, Su J, Zhao L, Yang KT, Feng Y, Zhou SF, Gustafsson JA, Yang T (2016) Soluble (pro)renin receptor via beta-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci USA 113(13):E1898–E1906. https://doi.org/10.1073/pnas.1602397113

    Article  CAS  Google Scholar 

  30. Gonzalez AA, Lara LS, Luffman C, Seth DM, Prieto MC (2011) Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension 57(4):859–864. https://doi.org/10.1161/HYPERTENSIONAHA.110.167957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiz Victor.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eduardo, M., Ivette, BR., Gabriela, DP. et al. Evaluation of Renin and Soluble (Pro)renin Receptor in Patients with IPF. A Comparison with Hypersensitivity Pneumonitis. Lung 197, 715–720 (2019). https://doi.org/10.1007/s00408-019-00278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-019-00278-5

Keywords

Navigation