Skip to main content

Advertisement

Log in

Clinically Promising Biomarkers in Cystic Fibrosis Pulmonary Exacerbations

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Cystic fibrosis is a complex genetic disease hallmarked by repetitive infectious exacerbations that leads to destruction of airway architecture, acute on chronic inflammatory changes, and deterioration in lung function. Predicting an exacerbation may help preempt some of these changes by the initiation of swift antibiotic and anti-inflammatory therapy. A search for biomarkers that could predict exacerbations or help guide duration of antibiotic therapy is being aggressively sought. In this review, we discuss the most recent and promising biomarkers that hopefully will assist in the future management of the CF patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waters V et al (2016) Special considerations for the treatment of pulmonary exacerbations in children with cystic fibrosis. Expert Rev Respir Med. doi:10.1080/17476348.2017.1246963

    PubMed  Google Scholar 

  2. Cogen JD et al (2017) Characterization of inpatient cystic fibrosis pulmonary exacerbations. Pediatrics 139:e20162642

    Article  PubMed  Google Scholar 

  3. Plummer A et al (2016) Duration of intravenous antibiotic therapy in people with cystic fibrosis. Cochrane Database Syst Rev 9:CD006682

    PubMed  Google Scholar 

  4. Brodt AM et al (2014) Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 44:382–393

    Article  PubMed  Google Scholar 

  5. Rubin JL et al (2017) Frequency and costs of pulmonary exacerbations in patients with cystic fibrosis in the United States. Curr Med Res Opin. doi:10.1080/03007995.2016.1277196

    Google Scholar 

  6. Junge S et al (2016) Factors associated with worse lung function in cystic fibrosis patients with persistent Staphylococcus aureus. PLoS ONE 11:e0166220

    Article  PubMed  PubMed Central  Google Scholar 

  7. Louw JJ et al (2012) Serum procalcitonin is not an early marker of pulmonary exacerbation in children with cystic fibrosis. Eur J Pediatr 171:139–142

    Article  CAS  PubMed  Google Scholar 

  8. Matouk E et al (2016) C-reactive protein in stable cystic fibrosis: an additional indicator of clinical disease activity and risk of future pulmonary exacerbations. J Pulm Respir Med 6:1000375

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Koff EM et al (2016) Development of the respiratory tract microbiota in cystic fibrosis. Curr Opin Pulm Med 22:623–628

    Article  Google Scholar 

  10. Pittman JE et al (2014) Cystic fibrosis: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc 11(Suppl 3):S161–S168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quinn RA et al (2016) Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease. PeerJ 4:e2174

    Article  PubMed  PubMed Central  Google Scholar 

  12. Erickson YO et al (2009) Elevated procalcitonin and C-reactive protein as potential biomarkers of sepsis in a subpopulation of thrombotic microangiopathy patients. J Clin Apher 24:150–154

    PubMed  PubMed Central  Google Scholar 

  13. Clark TW et al (2015) C-reactive protein level and microbial aetiology in patients hospitalised with acute exacerbation of COPD. Eur Respir J 45:76–86

    Article  CAS  PubMed  Google Scholar 

  14. Shoki AH et al (2013) Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest 144:1659–1670

    Article  CAS  PubMed  Google Scholar 

  15. Wojewodka G et al (2014) Candidate markers associated with the probability of future pulmonary exacerbations in cystic fibrosis patients. PLoS ONE 9:e88567

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quon BS et al (2014) Plasma sCD14 as a biomarker to predict pulmonary exacerbations in cystic fibrosis. PLoS ONE 9:e89341

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gray RD et al (2010) Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 9:193–198

    Article  CAS  PubMed  Google Scholar 

  18. Reid PA et al (2015) Measurement of serum calprotectin in stable patients predicts exacerbation and lung function decline in cystic fibrosis. Am J Respir Crit Care Med 191:233–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salpietro C et al (2013) Nasal high-mobility group box-1 protein in children with allergic rhinitis. Int Arch Allergy Immunol 161:116–121

    Article  CAS  PubMed  Google Scholar 

  20. Entezari M et al (2012) Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas aeruginosa pneumonia in cystic fibrosis. Mol Med 18:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sagel SD et al (2012) Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis. Am J Respir Crit Care Med 186:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quon BS et al (2016) Discovery of novel plasma protein biomarkers to predict imminent cystic fibrosis pulmonary exacerbations using multiple reaction monitoring mass spectrometry. Thorax 71:216–222

    Article  PubMed  Google Scholar 

  23. Talagrand-Reboul E et al (2017) The social life of Aeromonas through biofilm and quorum sensing systems. Front Microbiol 8:37

    PubMed  PubMed Central  Google Scholar 

  24. Barr HL et al (2016) Diagnostic and prognostic significance of systemic alkyl quinolones for P. aeruginosa in cystic fibrosis: a longitudinal study. J Cyst Fibros. doi:10.1016/j.jcf.2016.10.005

    PubMed  Google Scholar 

  25. Carmody LA et al (2013) Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc 10:179–187

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horck M et al (2016) Biomarkers in exhaled breath condensate are not predictive for pulmonary exacerbations in children with cystic fibrosis: results of a one-year observational study. PLoS ONE 11:e0152156. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152156

  27. Dryahina K et al (2016) Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex. J Breath Res 10:037102

    Article  PubMed  Google Scholar 

  28. Španěl P et al (2016) Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection? J Breath Res 10:036013

    Article  PubMed  Google Scholar 

  29. Ramachandran S et al (2012) A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 109:13362–13367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amato F et al (2013) Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis? PLoS ONE 8:e60448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gillen AE et al (2011) MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 438:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konstan MW et al (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150:448–454

    Article  CAS  PubMed  Google Scholar 

  33. Roxo-Rosa M et al (2006) Proteomic analysis of nasal cells from cystic fibrosis patients and non-cystic fibrosis control individuals: search for novel biomarkers of cystic fibrosis lung disease. Proteomics 6:2314–2325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Keith Scott.

Ethics declarations

Conflict of interest

There is no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, L.K., Toner, R. Clinically Promising Biomarkers in Cystic Fibrosis Pulmonary Exacerbations. Lung 195, 397–401 (2017). https://doi.org/10.1007/s00408-017-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-0024-3

Keywords

Navigation