Skip to main content

Advertisement

Log in

Vitamin D Status in South Africa and Tuberculosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

According to the World Health Organisation South Africa has the third highest tuberculosis (TB) incidence in the world, with an estimated 60 % incident cases having both TB and HIV. The South African National Tuberculosis Association (SANTA) recognized the importance of nutrition in the prevention and management of TB by including feeding schemes in community outreach programs. Vitamin D enhances innate immunity against mycobacterial infection through the antimicrobial peptide, cathelicidin. We reviewed studies on vitamin D status, its link with TB, and potential use in therapy in multiethnic South Africa with sunlight as primary source of vitamin D. Ethnicity, season, disease state, latitude, and urbanization are critical factors to be considered in vitamin D supplementation for prevention and treatment of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Autier P et al (2014) Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2(1):76–89. doi:10.1016/S2213-8587(13)70165-7

    Article  CAS  PubMed  Google Scholar 

  2. World Health organisation (2014) Global tuberculosis Report. http://www.who.int/tb/publications/global_report/en/

  3. Ross AC et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. doi:10.1210/jc.2010-2704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Holick MF et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 96(7):1911–1930. doi:10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  5. Holick MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19(2):73–78. doi:10.1016/j.annepidem.2007.12.001

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jones KS et al (2014) 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab 99(9):3373–3381. doi:10.1210/jc.2014-1714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Feldman D, Pike JW, Adams JS (eds) (2011) Vitamin D, 3rd edn. Academic Press. http://www.sciencedirect.com/science/book/9780123819789

  8. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76(4):1536–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Holick MF et al (2007) Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res 22(Suppl 2):V28–V33. doi:10.1359/jbmr.07s211

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka LY et al (1987) Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 64(6):1165–1168

    Article  CAS  PubMed  Google Scholar 

  11. Holick MF (ed) (2010) Vitamin D: physiology, molecular biology, and clinical applications, 2nd edn. Humana Press, Totowa. http://www.springer.com/public+health/book/978-1-60327-300-8

  12. Ralph AP, Lucas RM, Norval M (2013) Vitamin D and solar ultraviolet radiation in the risk and treatment of tuberculosis. Lancet Infect Dis 13(1):77–88. doi:10.1016/S1473-3099(12)70275-X

    Article  CAS  PubMed  Google Scholar 

  13. Holick MF (2008) Vitamin D and sunlight: strategies for cancer prevention and other health benefits. Clin J Am Soc Nephrol 3(5):1548–1554. doi:10.2215/CJN.01350308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hossein-nezhad A, Holick MF (2013) Vitamin D for health: a global perspective. Mayo Clin Proc 88(7):720–755. doi:10.1016/j.mayocp.2013.05.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Oliveria SA et al (2006) Sun exposure and risk of melanoma. Arch Dis Child 91(2):131–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Holick MF et al (2008) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 93(3):677–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Haddad JG, Matsuoka LY, Hollis BW, Hu YZ, Wortsman J (1993) Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest 91(6):2552–2555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chun RF et al (2013) Vitamin D and DBP: the free hormone hypothesis revisited. J Steroid Biochem Mol Biol 144:132–137. doi:10.1016/j.jsbmb.2013.09.012

    Article  PubMed  Google Scholar 

  19. Coussens AK et al (2015) High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans. Proc Natl Acad Sci USA 112(26):8052–8057. doi:10.1073/pnas.1500909112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Durazo-Arvizu RA et al (2014) 25-Hydroxyvitamin D in African-origin populations at varying latitudes challenges the construct of a physiologic norm. Am J Clin Nutr 100(3):908–914. doi:10.3945/ajcn.113.066605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. George JA et al (2014) Effect of adiposity, season, diet and calcium or vitamin D supplementation on the vitamin D status of healthy urban African and Asian-Indian adults. Br J Nutr 112(4):590–599. doi:10.1017/S0007114514001202

    Article  CAS  PubMed  Google Scholar 

  22. George JA et al (2014) The association between body composition, 25(OH)D, and PTH and bone mineral density in Black African and Asian Indian population groups. J Clin Endocrinol Metab 99:2146–2154. doi:10.1210/jc.2013-3968

    Article  CAS  PubMed  Google Scholar 

  23. O’ Neill V et al (2013) Vitamin D receptor gene expression and function in a South African population: ethnicity, vitamin D and FokI. PLoS One 8(6):e67663

    Article  Google Scholar 

  24. Hamill MM, Ward KA, Pettifor JM (2013) Bone mass, body composition and vitamin D status of ARV-naïve, urban, black South African women with HIV infection stratified by CD4 count. Osteoporos Int 24(11):2855–2861. doi:10.1007/s00198-013-2373-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kruger IM et al (2013) The association of 25(OH)D with blood pressure, pulse pressure and carotid-radial pulse wave velocity in African women. PLoS One 8(1):e54554. doi:10.1371/journal.pone.0054554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. George JA et al (2013) The association of 25 hydroxyvitamin D and parathyroid hormone with metabolic syndrome in two ethnic groups in South Africa. PLoS One 8(4):e61282. doi:10.1371/journal.pone.0061282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Naude CE et al (2012) Vitamin D and calcium status in South African adolescents with alcohol use disorders. Nutrients 4(8):1076–1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kruger MC et al (2011) Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. Nutr Res 31(10):748–758. doi:10.1016/j.nutres.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  29. Martineau AR et al (2011) Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc Natl Acad Sci USA 108(47):19013–19017. doi:10.1073/pnas.1111825108

    Article  PubMed Central  PubMed  Google Scholar 

  30. Poopedi MA, Norris SA, Pettifor JM (2011) Factors influencing the vitamin D status of 10-year-old urban South African children. Public Health Nutr 14(2):334–339. doi:10.1017/S136898001000234X

    Article  PubMed  Google Scholar 

  31. Haarburger D et al (2009) Relationship between vitamin D, calcium and parathyroid hormone in Cape Town. J Clin Pathol 62(6):567–569. doi:10.1136/jcp.2008.062877

    Article  CAS  PubMed  Google Scholar 

  32. Cornish DA, Maluleke V, Mhlanga T (2000) An investigation into a possible relationship between vitamin D, parathyroid hormone, calcium and magnesium in a normally pigmented and an albino rural black population in the Northern Province of South Africa. BioFactors 11(1–2):35–38

    Article  CAS  PubMed  Google Scholar 

  33. Daniels ED, Pettifor JM, Moodley GP (2000) Serum osteocalcin has limited usefulness as a diagnostic marker for rickets. Eur J Pediatr 159(10):730–733

    Article  CAS  PubMed  Google Scholar 

  34. Daniels ED et al (1997) Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporos Int 7(2):105–112

    Article  CAS  PubMed  Google Scholar 

  35. Charlton KE et al (1996) Vitamin D status of older South Africans. S Afr Med J 86(11):1406–1410

    CAS  PubMed  Google Scholar 

  36. Bhimma R et al (1995) Rickets in black children beyond infancy in Natal. S Afr Med J 85(7):668–672

    CAS  PubMed  Google Scholar 

  37. Van Papendorp DH (1990) The vitamin D status of South African women living in old-age homes. S Afr Med J 78(9):556

    PubMed  Google Scholar 

  38. Fairney A et al (1987) Vitamin A and D status of black South African women and their babies. Hum Nutr Clin Nutr 41(1):81–87

    CAS  PubMed  Google Scholar 

  39. Van der Westhuyzen J (1986) Biochemical evaluation of black preschool children in the northern Transvaal. S Afr Med J 70(3):146–148

    PubMed  Google Scholar 

  40. Pettifor JM et al (1981) Dietary calcium deficiency: a syndrome associated with bone deformities and elevated serum 1,25-dihydroxyvitamin D concentrations. Metab Bone Dis Relat Res 2(5):301–305. doi:10.1016/0221-8747(81)90013-8

    Article  Google Scholar 

  41. Pettifor JM et al (1979) Calcium deficiency in rural black children in South Africa—a comparison between rural and urban communities. Am J Clin Nutr 32(12):2477–2483

    CAS  PubMed  Google Scholar 

  42. Pettifor JM, Ross FP, Solomon L (1978) Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J 1(6116):826–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Pettifor JM et al (1978) Rickets in children of rural origin in South Africa: is low dietary calcium a factor? J Pediatr 92(2):320–324

    Article  CAS  PubMed  Google Scholar 

  44. Statistics South Africa (2014) Mid-year population estimates. http://www.statssa.gov.za/publications/P0302/P03022014.pdf

  45. Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124(6):869–871

    Article  CAS  PubMed  Google Scholar 

  46. Pettifor JM (2008) Vitamin D &/or calcium deficiency rickets in infants & children: a global perspective. Indian J Med Res 127(3):245–249

    CAS  PubMed  Google Scholar 

  47. Patterson N et al (2009) Genetic structure of a unique admixed population: implications for medical research. Hum Mol Genet 19(3):411–419. doi:10.1093/hmg/ddp505

    Article  PubMed  Google Scholar 

  48. Luxwolda MF et al (2012) Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr 108(9):1557–15561. doi:10.1017/S0007114511007161

    Article  CAS  PubMed  Google Scholar 

  49. Grant WB, Schuitemaker GE (2010) Health benefits of higher serum 25-hydroxyvitamin D levels in The Netherlands. J Steroid Biochem Mol Biol 121(1–2):456–458. doi:10.1016/j.jsbmb.2010.03.089

    Article  CAS  PubMed  Google Scholar 

  50. Rabenberg M et al (2015) Vitamin D status among adults in Germany—results from the German Health Interview and Examination Survey for Adults (DEGS1). BMC Public Health 15:641. doi:10.1186/s12889-015-2016-7

    Article  PubMed Central  PubMed  Google Scholar 

  51. Touvier M et al (2014) Determinants of vitamin D status in caucasian adults: influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J Invest Dermatol 135(2):378–388. doi:10.1038/jid.2014.400

    Article  PubMed  Google Scholar 

  52. Nimitphong H, Holick MF (2013) Vitamin D status and sun exposure in Southeast Asia. Dermatoendocrinol 5(1):34–37. doi:10.4161/derm.24054

    Article  PubMed Central  PubMed  Google Scholar 

  53. Shetty S et al (2014) Osteoporosis in healthy South Indian males and the influence of life style factors and vitamin D status on bone mineral density. J Osteoporos 2014:723238. doi:10.1155/2014/723238

    Article  PubMed Central  PubMed  Google Scholar 

  54. Wacker M, Holick MF (2013) A global perspective for health. Dermatoendocrinol 5(1):51–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nnoaham KE, Clarke A (2008) Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37(1):113–119. doi:10.1093/ije/dym247

    Article  PubMed  Google Scholar 

  56. Talat N et al (2010) Vitamin D deficiency and tuberculosis progression. Emerg Infect Dis 16(5):853–855. doi:10.3201/eid1605.091693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Liu PT et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773

    Article  CAS  PubMed  Google Scholar 

  58. Adams JS et al (2009) Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182(7):4289–4295. doi:10.4049/jimmunol.0803736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 19(9):1067–1077

    Article  CAS  PubMed  Google Scholar 

  60. Sloka S, Silva C, Wang J, Yong VW (2011) Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J Neuroinflamm 8:56. doi:10.1186/1742-2094-8-56

    Article  CAS  Google Scholar 

  61. Liu PT et al (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179(4):2060–2063

    Article  CAS  PubMed  Google Scholar 

  62. Yuk JM et al (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6(3):231–243. doi:10.1016/j.chom.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  63. Mily A et al (2013) Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis. BMC Pulm Med 13:23. doi:10.1186/1471-2466-13-23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Rahman S et al (2015) Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 156(2):85–97. doi:10.1016/j.clim.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  65. Zella LA et al (2007) Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 103(3–5):435–439

    Article  CAS  PubMed  Google Scholar 

  66. Martineau AR (2012) Old wine in new bottles: vitamin D in the treatment and prevention of tuberculosis. Proc Nutr Soc 71(1):84–89. doi:10.1017/S0029665111003326

    Article  CAS  PubMed  Google Scholar 

  67. Morcos MM et al (1998) Vitamin D administration to tuberculous children and its value. Boll Chim Farm 137(5):157–164

    CAS  PubMed  Google Scholar 

  68. Coussens AK et al (2012) Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci USA 109(38):15449–15454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Nursyam EW, Amin Z, Rumende CM (2006) The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones 38(1):3–5

    PubMed  Google Scholar 

  70. Salahuddin N et al (2013) Vitamin D accelerates clinical recovery from tuberculosis: results of the SUCCINCT Study [Supplementary Cholecalciferol in recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D supplementation in patients with pulmonar. BMC Infect Dis 13:22. doi:10.1186/1471-2334-13-22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wejse C et al (2009) Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 179(9):843–850. doi:10.1164/rccm.200804-567OC

    Article  CAS  PubMed  Google Scholar 

  72. Martineau AR et al (2011) High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377(9761):242–250. doi:10.1016/S0140-6736(10)61889-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Roth DE et al (2004) Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis 190(5):920–927

    Article  CAS  PubMed  Google Scholar 

  74. Babb C et al (2007) Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis (Edinb) 87(4):295–302

    Article  CAS  Google Scholar 

  75. Saccone D, Asani F, Bornman L (2015) Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene 561(2):171–180. doi:10.1016/j.gene.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  76. Vieth R (2011) Vitamin D nutrient to treat TB begs the prevention question. Lancet 377(9761):189–190. doi:10.1016/S0140-6736(10)62300-8

    Article  PubMed  Google Scholar 

  77. Ganmaa D (2015) Vitamin D supplementation in TB Prevention https://clinicaltrials.gov/ct2/show/study/NCT02276755

  78. Luxwolda MF et al (2013) Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr 52(3):1115–1125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank National Research foundation (NRF, Grant No. 81774) and the Cancer Association of South Africa (CANSA) for financial support of our research. Dr. Abhimanyu is indebted to the Claude Leon foundation that sponsored his Postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza Bornman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. All the authors read and approved the manuscript.

Human rights

This work was carried out in accordance with ‘The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans’. Ethical clearance was obtained from the South African National Blood Service (SANBS) and the University of Johannesburg’s Faculty of Science Ethics Committees.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhimanyu, Meyer, V., Jeffery, T.J. et al. Vitamin D Status in South Africa and Tuberculosis. Lung 193, 975–984 (2015). https://doi.org/10.1007/s00408-015-9789-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9789-4

Keywords

Navigation