Skip to main content

Advertisement

Log in

Cardiovascular Consequences of Sleep Apnea

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Sleep apnea is a common health concern that is characterized by repetitive episodes of asphyxia. This condition has been linked to serious long-term adverse effects such as hypertension, metabolic dysregulation, and cardiovascular disease. Although the mechanism for the initiation and aggravation of cardiovascular disease has not been fully elucidated, oxidative stress and subsequent endothelial dysfunction play major roles. Animal models, which have the advantage of being free of comorbidities and/or behavioral variables (that commonly occur in humans), allow invasive measurements under well-controlled experimental conditions, and as such are useful tools in the study of the pathophysiological mechanisms of sleep apnea. This review summarizes currently available information on the cardiovascular consequences of sleep apnea and briefly describes common experimental approaches useful to sleep apnea in different animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gupta RK, Chandra A, Verm AK, Kumar S (2010) Obstructive sleep apnoea: a clinical review. J Assoc Physicians India 58:438–441

    PubMed  CAS  Google Scholar 

  2. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90:47–112

    Article  PubMed  CAS  Google Scholar 

  3. Partinen M (1995) Epidemiology of obstructive sleep apnea syndrome. Curr Opin Pulm Med 1:482–487

    Article  PubMed  CAS  Google Scholar 

  4. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235

    Article  PubMed  CAS  Google Scholar 

  5. Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484

    Article  PubMed  CAS  Google Scholar 

  6. Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342:1378–1384

    Article  PubMed  CAS  Google Scholar 

  7. Kanagy NL (2009) Vascular effects of intermittent hypoxia. ILAR J 50:282–288

    PubMed  CAS  Google Scholar 

  8. Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G (2005) Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 172:613–618

    Article  PubMed  Google Scholar 

  9. Itzhaki S, Lavie L, Pillar G, Tal G, Lavie P (2005) Endothelial dysfunction in obstructive sleep apnea measured by peripheral arterial tone response in the finger to reactive hyperemia. Sleep 28:594–600

    PubMed  Google Scholar 

  10. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol 52:686–717

    Article  PubMed  Google Scholar 

  11. Golbidi S, Laher I (2010) Antioxidant therapy in human endocrine disorders. Med Sci Monit 16:RA9–RA24

    PubMed  CAS  Google Scholar 

  12. Schulz R, Mahmoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, Seeger W, Grimminger F (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea: impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162:566–570

    PubMed  CAS  Google Scholar 

  13. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939

    PubMed  Google Scholar 

  14. Barceló A, Miralles C, Barbé F, Vila M, Pons S, Agustí AG (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16:644–647

    Article  PubMed  Google Scholar 

  15. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124:1386–1392

    Article  PubMed  CAS  Google Scholar 

  16. Christou K, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4:225–228

    Article  PubMed  Google Scholar 

  17. Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172:915–920

    Article  PubMed  Google Scholar 

  18. Yamauchi M, Kimura H (2008) Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 10:755–768

    Article  PubMed  CAS  Google Scholar 

  19. Williams A, Scharf SM (2007) Obstructive sleep apnea, cardiovascular disease, and inflammation is NFkappaB the key? Sleep Breath 11:69–76

    Article  PubMed  Google Scholar 

  20. Minoguchi K, Yokoe T, Tazaki T, Minoguchi H, Tanaka A, Oda N, Okada S, Ohta S, Naito H, Adachi M (2005) Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 172:625–630

    Article  PubMed  Google Scholar 

  21. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  PubMed  CAS  Google Scholar 

  22. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi S, Nakamura Y, Nishijima T, Sakurai S, Inoue H (2005) Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome. Respir Med 99:1125–1131

    Article  PubMed  Google Scholar 

  24. Schulz R, Hummel C, Heinemann S, Seeger W, Grimminger F (2002) Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med 165:67–70

    PubMed  Google Scholar 

  25. Gjørup PH, Sadauskiene L, Wessels J, Nyvad O, Strunge B, Pedersen EB (2007) Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease. Am J Hypertens 20:44–52

    Article  PubMed  CAS  Google Scholar 

  26. Phillips SA, Olson EB, Morgan BJ, Lombard JH (2004) Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 286:H388–H393

    Article  PubMed  CAS  Google Scholar 

  27. Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M, Accurso V, Somers VK (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102:2607–2610

    PubMed  CAS  Google Scholar 

  28. Ip MS, Lam B, Chan LY, Zheng L, Tsang KW, Fung PC, Lam WK (2000) Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 162:2166–2171

    PubMed  CAS  Google Scholar 

  29. Chulz R, Schmidt D, Blum A, Lopes-Ribeiro X, Lucke C, Mayer K, Olschewski H, Seeger W, Grimminger F (2000) Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnea: response to CPAP therapy. Thorax 55:1046–1051

    Article  Google Scholar 

  30. Lavie L, Hefetz A, Luboshitzky R, Lavie P (2003) Plasma levels of nitric oxide and l-arginine in sleep apnea patients: effects of nCPAP treatment. J Mol Neurosci 21:57–63

    Article  PubMed  CAS  Google Scholar 

  31. Teramoto S, Kume H, Matsuse T, Ishii T, Miyashita A, Akishita M, Toba K, Ouchi Y (2003) Oxygen administration improves the serum level of nitric oxide metabolites in patients with obstructive sleep apnea syndrome. Sleep Med 4:403–407

    Article  PubMed  Google Scholar 

  32. Bayram NA, Ciftci B, Keles T, Durmaz T, Turhan S, Bozkurt E, Peker Y (2009) Endothelial function in normotensive men with obstructive sleep apnea before and 6 months after CPAP treatment. Sleep 32:1257–1263

    PubMed  Google Scholar 

  33. Schulz R, Seeger W, Grimminger F (2001) Serum nitrite/nitrate levels in obstructive sleep apnea. Am J Respir Crit Care Med 164:1997–1998

    PubMed  CAS  Google Scholar 

  34. Svatikova A, Wolk R, Wang HH, Otto ME, Bybee KA, Singh RJ, Somers VK (2004) Circulating free nitrotyrosine in obstructive sleep apnea. Am J Physiol 287:R284–R287

    CAS  Google Scholar 

  35. Tabrizi-Fard MA, Maurer TS, Fung HL (1999) In vivo disposition of 3-nitro-l-tyrosine in rats: implications on tracking systemic peroxynitrite exposure. Drug Metab Dispos 27:429–431

    PubMed  CAS  Google Scholar 

  36. Jelic S, Padeletti M, Kawut SM, Higgins C, Canfield SM, Onat D, Colombo PC, Basner RC, Factor P, LeJemtel TH (2008) Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117:2270–2278

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka T, Nakamura H, Yodoi J, Bloom ET (2005) Redox regulation of the signaling pathways leading to eNOS phosphorylation. Free Radic Biol Med 38:1231–1242

    Article  PubMed  CAS  Google Scholar 

  38. Yung LM, Leung FP, Yao X, Chen ZY, Huang Y (2006) Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets 6:1–19

    PubMed  CAS  Google Scholar 

  39. Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, Leeson P, Neubauer S, Ratnatunga C, Pillai R, Refsum H, Channon KM (2006) 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114:1193–1201

    Article  PubMed  CAS  Google Scholar 

  40. Carlson J, Hedner J, Pettersson A (1997) Increased plasma concentration of ADMA, a naturally occurring nitric oxide synthesis inhibitor, in OSA patients. Am J Respir Crit Care Med 155:A869

    Google Scholar 

  41. Ohike Y, Kozaki K, Iijima K, Eto M, Kojima T, Ohga E, Santa T, Imai K, Hashimoto M, Yoshizumi M, Ouchi Y (2005) Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure–possible involvement of nitric oxide and asymmetric NG, NG-dimethylarginine. Circ J 69:221–226

    Article  PubMed  CAS  Google Scholar 

  42. Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B (2002) Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res 55:506–519

    Article  PubMed  CAS  Google Scholar 

  43. Antman EM, DeMets D, Loscalzo J (2005) Cyclooxygenase inhibition and cardiovascular risk. Circulation 112:759–770

    Article  PubMed  CAS  Google Scholar 

  44. Lefebvre B, Godin-Ribuot D, Joyeux-Faure M, Caron F, Bessard G, Lévy P, Stanke-Labesque F (2006) Functional assessment of vascular reactivity after chronic intermittent hypoxia in the rat. Respir Physiol Neurobiol 150:278–286

    Article  PubMed  CAS  Google Scholar 

  45. Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, Somers VK (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105:2462–2464

    Article  PubMed  CAS  Google Scholar 

  46. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94:179–184

    PubMed  CAS  Google Scholar 

  47. Lavie L, Polotsky V (2009) Cardiovascular aspects in obstructive sleep apnea syndrome–molecular issues, hypoxia and cytokine profiles. Respiration 78:361–370

    Article  PubMed  CAS  Google Scholar 

  48. Zamarron C, García Paz V, Riveiro A (2008) Obstructive sleep apnea syndrome is a systemic disease. Current evidence. Eur J Intern Med 19:390–398

    Article  PubMed  Google Scholar 

  49. Hoffstein V, Herridge M, Mateika S, Redline S, Strohl KP (1994) Hematocrit levels in sleep apnea. Chest 106:787–791

    Article  PubMed  CAS  Google Scholar 

  50. Nobili L, Schiavi G, Bozano E, De Carli F, Ferrillo F, Nobili F (2000) Morning increase of whole blood viscosity in obstructive sleep apnea syndrome. Clin Hemorheol Microcirc 22:21–27

    PubMed  CAS  Google Scholar 

  51. Geiser T, Buck F, Meyer BJ, Bassetti C, Haeberli A, Gugger M (2002) In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome. Respiration 69:229–234

    Article  PubMed  Google Scholar 

  52. Hui DS, Ko FW, Fok JP, Chan MC, Li TS, Tomlinson B, Cheng G (2004) The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome. Chest 125:1768–1775

    Article  PubMed  Google Scholar 

  53. Wessendorf TE, Thilmann AF, Wang YM, Schreiber A, Konietzko N, Teschler H (2000) Fibrinogen levels and obstructive sleep apnea in ischemic stroke. Am J Respir Crit Care Med 162:2039–2042

    PubMed  CAS  Google Scholar 

  54. Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59:777–782

    Article  PubMed  CAS  Google Scholar 

  55. Zamarron C, Ricoy J, Riveiro A, Gude F (2008) Plasminogen activator inhibitor-1 in obstructive sleep apnea patients with and without hypertension. Lung 186:151–156

    Article  PubMed  CAS  Google Scholar 

  56. von Känel R, Loredo JS, Ancoli-Israel S, Mills PJ, Natarajan L, Dimsdale JE (2007) Association between polysomnographic measures of disrupted sleep and prothrombotic factors. Chest 131:733–739

    Article  Google Scholar 

  57. Dimova EY, Samoylenko A, Kietzmann T (2004) Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression. Antioxid Redox Signal 6:777–791

    Article  PubMed  CAS  Google Scholar 

  58. von Känel R, Dimsdale JE (2003) Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease. Chest 124:1956–1967

    Article  Google Scholar 

  59. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  PubMed  CAS  Google Scholar 

  60. Leung RS, Bradley TD (2001) Sleep apnea and cardiovascular disease. Am J Respir Crit Care Med 164:2147–2165

    PubMed  CAS  Google Scholar 

  61. Brooks D, Horner RL, Floras JS, Kozar LF, Render-Teixeira CL, Phillipson EA (1999) Baroreflex control of heart rate in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 159:1293–1297

    PubMed  CAS  Google Scholar 

  62. Tkacova R, Dajani HR, Rankin F, Fitzgerald FS, Floras JS, Douglas Bradley T (2000) Continuous positive airway pressure improves nocturnal baroreflex sensitivity of patients with heart failure and obstructive sleep apnea. J Hypertens 18:1257–1262

    Article  PubMed  CAS  Google Scholar 

  63. Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci USA 100:10073–10078

    Article  PubMed  CAS  Google Scholar 

  64. Dematteis M, Godin-Ribuot D, Arnaud C, Ribuot C, Stanke-Labesque F, Pépin JL, Lévy P (2009) Cardiovascular consequences of sleep-disordered breathing: contribution of animal models to understanding the human disease. ILAR J 50:262–281

    PubMed  CAS  Google Scholar 

  65. Dematteis M, Julien C, Guillermet C, Sturm N, Lantuejoul S, Mallaret M, Lévy P, Gozal E (2008) Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med 177:227–235

    Article  PubMed  Google Scholar 

  66. Kohler M, Stradling JR (2010) Mechanisms of vascular damage in obstructive sleep apnea. Nat Rev Cardiol 7:677–685

    PubMed  Google Scholar 

  67. Cutler MJ, Swift NM, Keller DM, Wasmund WL, Burk JR, Smith ML (2004) Periods of intermittent hypoxic apnea can alter chemoreflex control of sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol 287:H2054–H2060

    Article  PubMed  CAS  Google Scholar 

  68. Lai CJ, Yang CC, Hsu YY, Lin YN, Kuo TB (2006) Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol 100:1974–1982

    Article  PubMed  CAS  Google Scholar 

  69. Fletcher EC, Orolinova N, Bader M (2002) Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 92:627–633

    Article  PubMed  CAS  Google Scholar 

  70. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  PubMed  CAS  Google Scholar 

  71. Fletcher EC, Miller J, Schaaf JW, Fletcher JG (1987) Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep 10:35–44

    PubMed  CAS  Google Scholar 

  72. Kohler M, Pepperell JC, Casadei B, Craig S, Crosthwaite N, Stradling JR, Davies RJ (2008) CPAP and measures of cardiovascular risk in males with OSAS. Eur Respir J 32:1488–1496

    Article  PubMed  CAS  Google Scholar 

  73. Drager LF, Bortolotto LA, Figueiredo AC, Krieger EM, Lorenzi GF (2007) Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med 176:706–712

    Article  PubMed  CAS  Google Scholar 

  74. Ziegler MG, Mills PJ, Loredo JS, Ancoli-Israel S, Dimsdale JE (2001) Effect of continuous positive airway pressure and placebo treatment on sympathetic nervous activity in patients with obstructive sleep apnea. Chest 120:887–893

    Article  PubMed  CAS  Google Scholar 

  75. Mills PJ, Kennedy BP, Loredo JS, Dimsdale JE, Ziegler MG (2006) Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea. J Appl Physiol 100:343–348

    Article  PubMed  CAS  Google Scholar 

  76. Norman D, Loredo JS, Nelesen RA, Ancoli-Israel S, Mills PJ, Ziegler MG, Dimsdale JE (2006) Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure. Hypertension 47:840–845

    Article  PubMed  CAS  Google Scholar 

  77. Leiter JC, Knuth SL, Bartlett D Jr (1985) The effect of sleep deprivation on activity of the genioglossus muscle. Am Rev Respir Dis 132:1242–1245

    PubMed  CAS  Google Scholar 

  78. Cooper KR, Phillips BA (1982) Effect of short-term sleep loss on breathing. J Appl Physiol 53:855–858

    PubMed  CAS  Google Scholar 

  79. White DP, Douglas NJ, Pickett CK, Zwillich CW, Weil JV (1983) Sleep deprivation and the control of ventilation. Am Rev Respir Dis 128:984–986

    PubMed  CAS  Google Scholar 

  80. Tartar JL, Ward CP, Cordeira JW, Legare SL, Blanchette AJ, McCarley RW, Strecker RE (2008) Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behav Brain Res 197:450–453

    Article  PubMed  CAS  Google Scholar 

  81. Andersen ML, Martins PJF, D’Almeida V, Bignotto M, Tufik S (2005) Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats. J Sleep Res 14:83–90

    Article  PubMed  Google Scholar 

  82. Andersen ML, Martins PJF, D’Almeida V, Santos RF, Bignotto M, Tufik S (2004) Effects of paradoxical sleep deprivation on blood parameters associated with cardiovascular risk in aged rats. Exp Gerontol 39:817–824

    Article  PubMed  CAS  Google Scholar 

  83. Everson CA, Crowley WR (2004) Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab 286:E1060–E1070

    Article  PubMed  CAS  Google Scholar 

  84. Perry JC, D’Almeida V, Souza FG, Schoorlemmer GH, Colombari E, Tufik S (2007) Consequences of subchronic and chronic exposure to intermittent hypoxia and sleep deprivation on cardiovascular risk factors in rats. Respir Physiol Neurobiol 156:250–258

    Article  PubMed  Google Scholar 

  85. Yehuda S, Sredni B, Carrasso RL, Kenigsbuch-Sredni D (2009) REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interferon Cytokine Res 29:393–398

    Article  PubMed  CAS  Google Scholar 

  86. Irwin MR, Wang M, Ribeiro D, Cho HJ, Olmstead R, Breen EC, Martinez-Maza O, Cole S (2008) Sleep loss activates cellular inflammatory signaling. Biol Psychiatry 64:538–540

    Article  PubMed  CAS  Google Scholar 

  87. Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126

    PubMed  Google Scholar 

  88. Haack M, Mullington JM (2005) Sustained sleep restriction reduces emotional and physical well-being. Pain 119:56–64

    Article  PubMed  Google Scholar 

  89. Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y, Gozal D (2011) Sleep fragmentation induces cognitive deficits via NADPH oxidase-dependent pathways in mouse. Am J Respir Crit Care Med. doi:10.1164/rccm.201107-1173OC

  90. Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97:698–706

    Article  PubMed  CAS  Google Scholar 

  91. Li J, Savransky V, Nanayakkara A, Smith PL, O’Donnell CP, Polotsky VY (2007) Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol 102:557–563

    Article  PubMed  CAS  Google Scholar 

  92. Savransky V, Jun J, Li J, Nanayakkara A, Fonti S, Moser AB, Steele KE, Schweitzer MA, Patil SP, Bhanot S, Schwartz AR, Polotsky VY (2008) Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase. Circ Res 103:1173–1180

    Article  PubMed  CAS  Google Scholar 

  93. Drager LF, Jun JC, Polotsky VY (2010) Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab 24:843–851

    Article  PubMed  CAS  Google Scholar 

  94. Savransky V, Nanayakkara A, Vivero A, Li J, Bevans S, Smith PL, Torbenson MS, Polotsky VY (2007) Chronic intermittent hypoxia predisposes to liver injury. Hepatology 45:1007–1013

    Article  PubMed  CAS  Google Scholar 

  95. Pamidi S, Aronsohn RS, Tasali E (2010) Obstructive sleep apnea: role in the risk and severity of diabetes. Best Pract Res Clin Endocrinol Metab 24:703–715

    Article  PubMed  Google Scholar 

  96. Farré R, Montserrat JM, Navajas D (2008) Morbidity due to obstructive sleep apnea: insights from animal models. Curr Opin Pulm Med 14:530–536

    Article  PubMed  Google Scholar 

  97. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL (2002) Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 165:677–682

    PubMed  Google Scholar 

  98. Punjabi NM, Beamer BA (2009) Alterations in glucose disposal in sleep-disordered breathing. Am J Respir Crit Care Med 179:235–240

    Article  PubMed  CAS  Google Scholar 

  99. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY, O’Donnell CP (2007) Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 175:851–857

    Article  PubMed  CAS  Google Scholar 

  100. Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR, O’Donnell CP (2003) Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol 552:253–264

    Article  PubMed  CAS  Google Scholar 

  101. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–352

    Article  PubMed  CAS  Google Scholar 

  102. Magalang UJ, Cruff JP, Rajappan R, Hunter MG, Patel T, Marsh CB, Raman SV, Parinandi NL (2009) Intermittent hypoxia suppresses adiponectin secretion by adipocytes. Exp Clin Endocrinol Diabetes 117:129–134

    Article  PubMed  CAS  Google Scholar 

  103. Jun J, Polotsky VY (2007) Sleep disordered breathing and metabolic effects: evidence from animal models. Sleep Med Clin 2:263–277

    Article  PubMed  Google Scholar 

  104. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    Article  PubMed  CAS  Google Scholar 

  105. Parlapiano C, Borgia MC, Minni A, Alessandri N, Basal I, Saponara M (2005) Cortisol circadian rhythm and 24-hour Holter arterial pressure in OSAS patients. Endocr Res 31:371–374

    Article  PubMed  CAS  Google Scholar 

  106. Wang TY, Chen XQ, Du JZ, Xu NY, Wei CB, Vale WW (2004) Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint. Neuroscience 128:111–119

    Article  PubMed  CAS  Google Scholar 

  107. Neuzeret PC, Gormand F, Reix P, Parrot S, Sastre JP, Buda C, Guidon G, Sakai K, Lin JS (2011) A new animal model of obstructive sleep apnea responding to continuous positive airway pressure. Sleep 34:541–548

    PubMed  Google Scholar 

  108. Hendricks JC, Kline LR, Kovalski RJ, O’Brien JA, Morrison AR, Pack AI (1987) The English bulldog: a natural model of sleep-disordered breathing. J Appl Physiol 63:1344–1350

    PubMed  CAS  Google Scholar 

  109. Veasey SC, Fenik P, Panckeri K, Pack AI, Hendricks JC (1999) The effects of trazodone with l-tryptophan on sleep-disordered breathing in the English bulldog. Am J Respir Crit Care Med 160:1659–1667

    PubMed  CAS  Google Scholar 

  110. Veasey SC, Chachkes J, Fenik P, Hendricks JC (2001) The effects of ondansetron on sleep-disordered breathing in the English bulldog. Sleep 24:155–160

    PubMed  CAS  Google Scholar 

  111. Carley DW, Radulovacki M (2003) Sleep-related breathing disorders, experimental models and therapeutic potential. Marcel Dekker, New York

    Google Scholar 

  112. Lonergan RP 3rd, Ware JC, Atkinson RL, Winter WC, Suratt PM (1998) Sleep apnea in obese miniature pigs. J Appl Physiol 84:531–536

    PubMed  Google Scholar 

  113. Tuck SA, Dort JC, Olson ME, Remmers JE (1999) Monitoring respiratory function and sleep in the obese Vietnamese pot-bellied pig. J Appl Physiol 87:444–451

    PubMed  CAS  Google Scholar 

  114. Philip P, Gross CE, Taillard J, Bioulac B, Guilleminault C (2005) An animal model of a spontaneously reversible obstructive sleep apnea syndrome in the monkey. Neurobiol Dis 20:428–431

    Article  PubMed  CAS  Google Scholar 

  115. Van Lunteren E (1996) Effects of genetic obesity on rat upper airway muscle and diaphragm contractile properties. Eur Respir J 9:2139–2144

    PubMed  Google Scholar 

  116. Alonso-Galicia M, Brands MW, Zappe DH, Hall JE (1996) Hypertension in obese Zucker rats. Role of angiotensin II and adrenergic activity. Hypertension 28:1047–1054

    PubMed  CAS  Google Scholar 

  117. Fredersdorf S, Thumann C, Ulucan C, Griese DP, Luchner A, Riegger GA, Kromer EP, Weil J (2004) Myocardial hypertrophy and enhanced left ventricular contractility in Zucker diabetic fatty rats. Cardiovasc Pathol 13:11–19

    Article  PubMed  CAS  Google Scholar 

  118. Lee SD, Nakano H, Farkas GA (2005) Adenosinergic modulation of ventilation in obese Zucker rats. Obes Res 13:545–555

    Article  PubMed  CAS  Google Scholar 

  119. Radulovacki M, Trbovic S, Carley DW (1996) Hypotension reduces sleep apneas in Zucker lean and Zucker obese rats. Sleep 19:767–773

    PubMed  CAS  Google Scholar 

  120. Nakano H, Magalang UJ, Lee SD, Krasney JA, Farkas GA (2001) Serotonergic modulation of ventilation and upper airway stability in obese Zucker rats. Am J Respir Crit Care Med 163:1191–1197

    PubMed  CAS  Google Scholar 

  121. Brennick MJ, Pickup S, Cater JR, Kuna ST (2006) Phasic respiratory pharyngeal mechanics by magnetic resonance imaging in lean and obese Zucker rats. Am J Respir Crit Care Med 173:1031–1037

    Article  PubMed  Google Scholar 

  122. Lee SD, Kuo WW, Bau DT, Ko FY, Wu FL, Kuo CH, Tsai FJ, Wang PS, Lu MC, Huang CY (2008) The coexistence of nocturnal sustained hypoxia and obesity additively increases cardiac apoptosis. J Appl Physiol 104:1144–1153

    Article  PubMed  CAS  Google Scholar 

  123. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  PubMed  CAS  Google Scholar 

  124. Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A, Peitsch MC, Tschopp J (1997) Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J Biol Chem 272:18827–18833

    Article  PubMed  CAS  Google Scholar 

  125. Sato T, Saito H, Seto K, Takatsuji H (1990) Sleep apneas and cardiac arrhythmias in freely moving rats. Am J Physiol 259:R282–R287

    PubMed  CAS  Google Scholar 

  126. Mendelson WB, Martin JV, Perlis M, Giesen H, Wagner R, Rapoport SI (1988) Periodic cessation of respiratory effort during sleep in adult rats. Physiol Behav 43:229–234

    Article  PubMed  CAS  Google Scholar 

  127. Thomas AJ, Austin W, Friedman L, Strohl KP (1992) A model of ventilatory instability induced in the unrestrained rat. J Appl Physiol 73:1530–1536

    PubMed  CAS  Google Scholar 

  128. Carley DW, Trbovic S, Radulovacki M (1996) Sleep apnea in normal and REM sleep-deprived normotensive Wistar-Kyoto and spontaneously hypertensive (SHR) rats. Physiol Behav 59:827–831

    Article  PubMed  CAS  Google Scholar 

  129. Kuo TB, Lai CJ, Shaw FZ, Lai CW, Yang CC (2004) Sleep-related sympathovagal imbalance in SHR. Am J Physiol 286:H1170–H1176

    CAS  Google Scholar 

  130. Plante GE (2006) Sleep and vascular disorders. Metabolism 55:s45–s49

    Article  PubMed  CAS  Google Scholar 

  131. Carley DW, Berecek K, Videnovic A, Radulovacki M (2000) Sleep-disordered respiration in phenotypically normotensive, genetically hypertensive rats. Am J Respir Crit Care Med 162:1474–1479

    PubMed  CAS  Google Scholar 

  132. Carley DW, Trbovic SM, Bozanich A, Radulovacki M (1997) Cardiopulmonary control in sleeping Sprague-Dawley rats treated with hydralazine. J Appl Physiol 83:1954–1961

    PubMed  CAS  Google Scholar 

  133. Trbovic SM, Radulovacki M, Carley DW (1997) Protoveratrines A and B increase sleep apnea index in Sprague-Dawley rats. J Appl Physiol 83:1602–1606

    PubMed  CAS  Google Scholar 

  134. Carley DW, Radulovacki M (1999) Mirtazapine, a mixed-profile serotonin agonist/antagonist, suppresses sleep apnea in the rat. Am J Respir Crit Care Med 160:1824–1829

    PubMed  CAS  Google Scholar 

  135. Carley DW, Olopade C, Ruigt GS, Radulovacki M (2007) Efficacy of mirtazapine in obstructive sleep apnea syndrome. Sleep 30:35–41

    PubMed  Google Scholar 

  136. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  PubMed  CAS  Google Scholar 

  137. Nakamura A, Kuwaki T (2003) Sleep apnea in mice: a useful animal model for study of SIDS? Early Hum Dev 75:S167–S174

    Article  PubMed  Google Scholar 

  138. Yamauchi M, Kimura H, Strohl KP (2010) Mouse models of apnea: strain differences in apnea expression and its pharmacologic and genetic modification. Adv Exp Med Biol 669:303–307

    Article  PubMed  Google Scholar 

  139. Berry-Kravis EM, Zhou L, Rand CM, Weese-Mayer DE (2006) Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 174:1139–1144

    Article  PubMed  CAS  Google Scholar 

  140. Burton MD, Kawashima A, Brayer JA, Kazemi H, Shannon DC, Schuchardt A, Costantini F, Pachnis V, Kinane TB (1997) RET proto-oncogene is important for the development of respiratory CO2 sensitivity. J Auton Nerv Syst 63:137–143

    Article  PubMed  CAS  Google Scholar 

  141. Tsujino N, Sakurai T (2009) Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 61:162–176

    Article  PubMed  CAS  Google Scholar 

  142. Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T (2007) Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol 102:241–248

    Article  PubMed  CAS  Google Scholar 

  143. Baekey DM, Feng P, Decker MJ, Strohl KP (2009) Breathing and sleep: measurement methods, genetic influences, and developmental impacts. ILAR J 50:248–261

    PubMed  CAS  Google Scholar 

  144. Brennick MJ, Pack AI, Ko K, Kim E, Pickup S, Maislin G, Schwab RJ (2009) Altered upper airway and soft tissue structures in the New Zealand Obese mouse. Am J Respir Crit Care Med 179:158–169

    Article  PubMed  Google Scholar 

  145. Brennick MJ, Kuna ST, Pickup S, Cater J, Schwab RJ (2011) Respiratory modulation of the pharyngeal airway in lean and obese mice. Respir Physiol Neurobiol 175:296–302

    Article  PubMed  Google Scholar 

  146. Katayama K, Smith CA, Henderson KS, Dempsey JA (2007) Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs. J Appl Physiol 103:1942–1949

    Article  PubMed  Google Scholar 

  147. Kimoff RJ, Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Champagne V, Mayer P, Phillipson EA (1997) Ventilatory and arousal responses to hypoxia and hypercapnia in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 156:886–894

    PubMed  CAS  Google Scholar 

  148. Launois SH, Averill N, Abraham JH, Kirby DA, Weiss JW (2001) Cardiovascular responses to nonrespiratory and respiratory arousals in a porcine model. J Appl Physiol 90:114–120

    PubMed  CAS  Google Scholar 

  149. White SG, Fletcher EC, Miller CC 3rd (1995) Acute systemic blood pressure elevation in obstructive and nonobstructive breath hold in primates. J Appl Physiol 79:324–330

    PubMed  CAS  Google Scholar 

  150. Farré R, Rotger M, Montserrat JM, Calero G, Navajas D (2003) Collapsible upper airway segment to study the obstructive sleep apnea/hypopnea syndrome in rats. Respir Physiol Neurobiol 136:199–209

    Article  PubMed  Google Scholar 

  151. Nácher M, Serrano-Mollar A, Farré R, Panés J, Seguí J, Montserrat JM (2007) Recurrent obstructive apneas trigger early systemic inflammation in a rat model of sleep apnea. Respir Physiol Neurobiol 155:93–96

    Article  PubMed  Google Scholar 

  152. Schneider H, Schaub CD, Chen CA, Andreoni KA, Schwartz AR, Smith PL, Robotham JL, O’Donnell CP (2000) Effects of arousal and sleep state on systemic and pulmonary hemodynamics in obstructive apnea. J Appl Physiol 88:1084–1092

    PubMed  CAS  Google Scholar 

  153. Schoorlemmer GH, Rossi MV, Tufik S, Cravo SL (2011) A new method to produce obstructive sleep apnoea in conscious unrestrained rats. Exp Physiol 96:1010–1018

    PubMed  CAS  Google Scholar 

  154. Farré R, Nácher M, Serrano-Mollar A, Gáldiz JB, Alvarez FJ, Navajas D, Montserrat JM (2007) Rat model of chronic recurrent airway obstructions to study the sleep apnea syndrome. Sleep 30:930–933

    PubMed  Google Scholar 

  155. Hamrahi H, Stephenson R, Mahamed S, Liao KS, Horner RL (2001) Selected Contribution: Regulation of sleep-wake states in response to intermittent hypoxic stimuli applied only in sleep. J Appl Physiol 90:2490–2501

    PubMed  CAS  Google Scholar 

  156. Bonsignore MR, Marrone O, Insalaco G, Bonsignore G (1994) The cardiovascular effects of obstructive sleep apnoeas: analysis of pathogenic mechanisms. Eur Respir J 7:786–805

    Article  PubMed  CAS  Google Scholar 

  157. McGuire M, Bradford A (2001) Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and haematocrit in rats. Eur Respir J 18:279–285

    Article  PubMed  CAS  Google Scholar 

  158. de Frutos S, Duling L, Alò D, Berry T, Jackson-Weaver O, Walker M, Kanagy N, González Bosc L (2008) NFATc3 is required for intermittent hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 294:H2382–H2390

    Article  PubMed  CAS  Google Scholar 

  159. Dunleavy M, Dooley M, Cox D, Bradford A (2005) Chronic intermittent asphyxia increases platelet reactivity in rats. Exp Physiol 90:411–416

    Article  PubMed  CAS  Google Scholar 

  160. Carreras A, Wang Y, Gozal D, Montserrat JM, Navajas D, Farré R (2011) Non-invasive system for applying airway obstructions to model obstructive sleep apnea in mice. Respir Physiol Neurobiol 175:164–168

    Article  PubMed  Google Scholar 

  161. Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens 15:1593–1603

    Article  PubMed  CAS  Google Scholar 

  162. Bradford A (2004) Effects of chronic intermittent asphyxia on haematocrit, pulmonary arterial pressure and skeletal muscle structure in rats. Exp Physiol 89:44–52

    Article  PubMed  Google Scholar 

  163. Allahdadi KJ, Walker BR, Kanagy NL (2005) Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension 45:705–709

    Article  PubMed  CAS  Google Scholar 

  164. Fletcher EC (2001) Invited review: Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90:1600–1605

    Article  PubMed  CAS  Google Scholar 

  165. Kanagy NL, Walker BR, Nelin LD (2001) Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension 37:511–515

    PubMed  CAS  Google Scholar 

  166. Julien C, Bayat S, Lévy P (2003) Vascular reactivity to norepinephrine and acetylcholine after chronic intermittent hypoxia in mice. Respir Physiol Neurobiol 139:21–32

    Article  PubMed  CAS  Google Scholar 

  167. Tahawi Z, Orolinova N, Joshua IG, Bader M, Fletcher EC (2001) Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol 90:2007–2013

    PubMed  CAS  Google Scholar 

  168. McNulty PH, Ng C, Liu WX, Jagasia D, Letsou GV, Baldwin JC, Soufer R (1996) Autoregulation of myocardial glycogen concentration during intermittent hypoxia. Am J Physiol 271:R311–R319

    PubMed  CAS  Google Scholar 

  169. Li J, Grigoryev DN, Ye SQ, Thorne L, Schwartz AR, Smith PL, O’Donnell CP, Polotsky VY (2005) Chronic intermittent hypoxia upregulates genes of lipid biosynthesis in obese mice. J Appl Physiol 99:1643–1648

    Article  PubMed  CAS  Google Scholar 

  170. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics 25:450–457

    Article  PubMed  CAS  Google Scholar 

  171. Li J, Nanayakkara A, Jun J, Savransky V, Polotsky VY (2007) Effect of deficiency in SREBP cleavage-activating protein on lipid metabolism during intermittent hypoxia. Physiol Genomics 31:237–280

    CAS  Google Scholar 

  172. Feng SZ, Tian JL, Zhang Q, Wang H, Sun N, Zhang Y, Chen BY (2011) An experimental research on chronic intermittent hypoxia leading to liver injury. Sleep Breath 15:493–502

    Article  PubMed  Google Scholar 

  173. Liu JN, Zhang JX, Lu G, Qiu Y, Yang D, Yin GY, Zhang XL (2010) The effect of oxidative stress in myocardial cell injury in mice exposed to chronic intermittent hypoxia. Chin Med J (Engl) 123:74–78

    Google Scholar 

  174. Matsumoto C, Hayashi T, Kitada K, Yamashita C, Miyamura M, Mori T, Ukimura A, Ohkita M, Jin D, Takai S, Miyazaki M, Okada Y, Kitaura Y, Matsumura Y (2009) Chymase plays an important role in left ventricular remodeling induced by intermittent hypoxia in mice. Hypertension 54:164–171

    Article  PubMed  CAS  Google Scholar 

  175. Nácher M, Farré R, Montserrat JM, Torres M, Navajas D, Bulbena O, Serrano-Mollar A (2009) Biological consequences of oxygen desaturation and respiratory effort in an acute animal model of obstructive sleep apnea (OSA). Sleep Med 10:892–897

    Article  PubMed  Google Scholar 

  176. Savransky V, Bevans S, Nanayakkara A, Li J, Smith PL, Torbenson MS, Polotsky VY (2007) Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol 293:G871–G877

    Article  PubMed  CAS  Google Scholar 

  177. Troncoso Brindeiro CM, da Silva AQ, Allahdadi KJ, Youngblood V, Kanagy NL (2007) Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol 293:H2971–H2976

    Article  PubMed  CAS  Google Scholar 

  178. Park AM, Suzuki YJ (2007) Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol 102:1806–1814

    Article  PubMed  CAS  Google Scholar 

  179. Rosa DP, Martinez D, Picada JN, Semedo JG, Marroni NP (2011) Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure. Comp Hepatol 10:1

    Article  PubMed  CAS  Google Scholar 

  180. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126:313–323

    Article  PubMed  CAS  Google Scholar 

  181. Allahdadi KJ, Cherng TW, Pai H, Silva AQ, Walker BR, Nelin LD, Kanagy NL (2008) Endothelin type A receptor antagonist normalizes blood pressure in rats exposed to eucapnic intermittent hypoxia. Am J Physiol Heart Circ Physiol 295:H434–H440

    Article  PubMed  CAS  Google Scholar 

  182. Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT (2011) Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol 301:R131–R139

    Article  PubMed  CAS  Google Scholar 

  183. Kalaria RN, Spoors L, Laude EA, Emery CJ, Thwaites-Bee D, Fairlie J, Oakley AE, Barer DH, Barer GR (2004) Hypoxia of sleep apnoea: cardiopulmonary and cerebral changes after intermittent hypoxia in rats. Respir Physiol Neurobiol 140:53–62

    Article  PubMed  Google Scholar 

  184. Iturriaga R, Moya EA, Del Rio R (2010) Cardiorespiratory alterations induced by intermittent hypoxia in a rat model of sleep apnea. Adv Exp Med Biol 669:271–274

    Article  PubMed  Google Scholar 

  185. Othman M, Gordon SP, Iscoe S (2010) Repeated inspiratory occlusions in anesthetized rats acutely increases blood coagulability as assessed by thromboelastography. Respir Physiol Neurobiol 171:61–66

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors declare that there are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Laher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golbidi, S., Badran, M., Ayas, N. et al. Cardiovascular Consequences of Sleep Apnea. Lung 190, 113–132 (2012). https://doi.org/10.1007/s00408-011-9340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-011-9340-1

Keywords

Navigation