Skip to main content
Log in

The relationship between cortisol reactivity and emotional brain function is differently moderated by childhood trauma, in bipolar disorder, schizophrenia and healthy individuals

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Childhood trauma is a risk factor for psychotic and mood disorders that is associated with abnormal hypothalamic–pituitary–adrenal (HPA) axis function in response to stress and abnormal social brain function. Here, we aimed to determine whether childhood trauma exposure would differently moderate associations between cortisol reactivity and social brain function, among cases with schizophrenia (SZ), bipolar disorder (BD) and in healthy individuals (HC). Forty cases with SZ, 35 with BD and 34 HCs underwent functional magnetic resonance imaging while performing an emotional face-matching task. Participants completed the Childhood Trauma Questionnaire and cortisol reactivity (i.e. the slope indexing the within-subject difference between pre- and post-imaging salivary cortisol levels) was determined. The severity of childhood trauma moderated the relationship between cortisol reactivity and brain activation in the bilateral temporo-parieto-insular junctions, right middle cingulum, right pre/postcentral gyri, left cerebellum and right lingual gyrus, differently depending on the clinical group. When exposed to high levels of trauma, the cortisol slope was negatively associated with activation in these regions in HC, while the cortisol slope was positively associated with activation in these regions in SZ cases. Similarly, there were differences between the groups in how trauma severity moderated the relationship between cortisol reactivity and functional connectivity between the amygdala and dorsolateral prefrontal cortex. In addition to reflecting typical associations between cortisol reactivity and emotional brain function when not exposed to childhood trauma, these findings provide new evidence that trauma exposure disrupts these relationships in both healthy individuals and in cases with SZ or BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Green MJ, Girshkin L, Teroganova N, Quidé Y (2014) Stress, schizophrenia and bipolar disorder. Curr Top Behav Neurosci 18:217–235. https://doi.org/10.1007/7854_2014_290

    Article  CAS  PubMed  Google Scholar 

  2. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, Read J, van Os J, Bentall RP (2012) Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull 38(4):661–671. https://doi.org/10.1093/schbul/sbs050

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, Domschke K, Hohoff C, Ohrmann P, Bauer J, Lindner C, Postert C, Konrad C, Arolt V, Heindel W, Suslow T, Kugel H (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatr 71(4):286–293. https://doi.org/10.1016/j.biopsych.2011.10.021

    Article  Google Scholar 

  4. van Harmelen AL, van Tol MJ, Dalgleish T, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P, Penninx BW, Elzinga BM (2014) Hypoactive medial prefrontal cortex functioning in adults reporting childhood emotional maltreatment. Soc Cogn Affect Neurosci 9(12):2026–2033. https://doi.org/10.1093/scan/nsu008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barker V, Gumley A, Schwannauer M, Lawrie SM (2015) An integrated biopsychosocial model of childhood maltreatment and psychosis. Br J Psychiatry 206(3):177–180. https://doi.org/10.1192/bjp.bp.113.143578

    Article  PubMed  Google Scholar 

  6. Myin-Germeys I, van Os J (2007) Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin Psychol Rev 27(4):409–424. https://doi.org/10.1016/j.cpr.2006.09.005

    Article  PubMed  Google Scholar 

  7. Lardinois M, Lataster T, Mengelers R, Van Os J, Myin-Germeys I (2011) Childhood trauma and increased stress sensitivity in psychosis. Acta Psychiatr Scand 123(1):28–35. https://doi.org/10.1111/j.1600-0447.2010.01594.x

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Zhang D, Zhao Y, Tan S, Luo Y (2016) Deficits in attentional processing of fearful facial expressions in schizophrenic patients. Sci Rep 6:32594. https://doi.org/10.1038/srep32594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Girshkin L, Matheson SL, Shepherd AM, Green MJ (2014) Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrino 49:187–206. https://doi.org/10.1016/j.psyneuen.2014.07.013

    Article  CAS  Google Scholar 

  10. Ciufolini S, Dazzan P, Kempton MJ, Pariante C, Mondelli V (2014) HPA axis response to social stress is attenuated in schizophrenia but normal in depression: evidence from a meta-analysis of existing studies. Neurosci Biobehav Rev 47:359–368. https://doi.org/10.1016/j.neubiorev.2014.09.004

    Article  PubMed  Google Scholar 

  11. Girshkin L, O’Reilly N, Quidé Y, Teroganova N, Rowland JE, Schofield PR, Green MJ (2016) Diurnal cortisol variation and cortisol response to an MRI stressor in schizophrenia and bipolar disorder. Psychoneuroendocrino 67:61–69. https://doi.org/10.1016/j.psyneuen.2016.01.021

    Article  CAS  Google Scholar 

  12. Pruessner M, Cullen AE, Aas M, Walker EF (2017) The neural diathesis-stress model of schizophrenia revisited: an update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci Biobehav Rev 73:191–218. https://doi.org/10.1016/j.neubiorev.2016.12.013

    Article  PubMed  Google Scholar 

  13. Berger M, Kraeuter AK, Romanik D, Malouf P, Amminger GP, Sarnyai Z (2016) Cortisol awakening response in patients with psychosis: systematic review and meta-analysis. Neurosci Biobehav Rev 68:157–166. https://doi.org/10.1016/j.neubiorev.2016.05.027

    Article  CAS  PubMed  Google Scholar 

  14. Gil-Ad I, Dickerman Z, Amdursky S, Laron Z (1986) Diurnal rhythm of plasma beta endorphin, cortisol and growth hormone in schizophrenics as compared to control subjects. Psychopharmacology 88(4):496–499. https://doi.org/10.1007/bf00178514

    Article  CAS  PubMed  Google Scholar 

  15. Cervantes P, Gelber S, Kin FN, Nair VN, Schwartz G (2001) Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci 26(5):411–416

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirschbaum C, Pirke KM, Hellhammer DH (1993) The ‘trier social stress test’–a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28(1–2):76–81. https://doi.org/10.1159/000119004

    Article  CAS  PubMed  Google Scholar 

  17. Brenner K, Liu A, Laplante DP, Lupien S, Pruessner JC, Ciampi A, Joober R, King S (2009) Cortisol response to a psychosocial stressor in schizophrenia: blunted, delayed, or normal? Psychoneuroendocrinology 34(6):859–868. https://doi.org/10.1016/j.psyneuen.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Muehlhan M, Lueken U, Wittchen HU, Kirschbaum C (2011) The scanner as a stressor: evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session. Int J Psychophysiol 79(2):118–126. https://doi.org/10.1016/j.ijpsycho.2010.09.009

    Article  PubMed  Google Scholar 

  19. Peters S, Cleare AJ, Papadopoulos A, Fu CH (2011) Cortisol responses to serial MRI scans in healthy adults and in depression. Psychoneuroendocrinology 36(5):737–741. https://doi.org/10.1016/j.psyneuen.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  20. Tessner KD, Walker EF, Hochman K, Hamann S (2006) Cortisol responses of healthy volunteers undergoing magnetic resonance imaging. Hum Brain Mapp 27(11):889–895. https://doi.org/10.1002/hbm.20229

    Article  PubMed  PubMed Central  Google Scholar 

  21. Braehler C, Holowka D, Brunet A, Beaulieu S, Baptista T, Debruille JB, Walker CD, King S (2005) Diurnal cortisol in schizophrenia patients with childhood trauma. Schizophr Res 79(2–3):353–354. https://doi.org/10.1016/j.schres.2004.07.007

    Article  PubMed  Google Scholar 

  22. Ruby E, Rothman K, Corcoran C, Goetz RR, Malaspina D (2017) Influence of early trauma on features of schizophrenia. Early Interv Psychiatry 11(4):322–333. https://doi.org/10.1111/eip.12239

    Article  PubMed  Google Scholar 

  23. Faravelli C, Mansueto G, Palmieri S, Lo Sauro C, Rotella F, Pietrini F, Fioravanti G (2017) Childhood adversity, cortisol levels, and psychosis: a retrospective investigation. J Nerv Ment Dis 205(7):574–579. https://doi.org/10.1097/NMD.0000000000000699

    Article  PubMed  Google Scholar 

  24. Seidenfaden D, Knorr U, Soendergaard MG, Poulsen HE, Fink-Jensen A, Jorgensen MB, Jorgensen A (2017) The relationship between self-reported childhood adversities, adulthood psychopathology and psychological stress markers in patients with schizophrenia. Compr Psychiatry 72:48–55. https://doi.org/10.1016/j.comppsych.2016.09.009

    Article  PubMed  Google Scholar 

  25. Lange C, Huber CG, Frohlich D, Borgwardt S, Lang UE, Walter M (2017) Modulation of HPA axis response to social stress in schizophrenia by childhood trauma. Psychoneuroendocrinology 82:126–132. https://doi.org/10.1016/j.psyneuen.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  26. Schreuder MM, Vinkers CH, Mesman E, Claes S, Nolen WA, Hillegers MH (2016) Childhood trauma and HPA axis functionality in offspring of bipolar parents. Psychoneuroendocrinology 74:316–323. https://doi.org/10.1016/j.psyneuen.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  27. Peters AT, Van Meter A, Pruitt PJ, Briceno EM, Ryan KA, Hagan M, Weldon AL, Kassel MT, Vederman A, Zubieta JK, McInnis M, Weisenbach SL, Langenecker SA (2016) Acute cortisol reactivity attenuates engagement of fronto-parietal and striatal regions during emotion processing in negative mood disorders. Psychoneuroendocrinology 73:67–78. https://doi.org/10.1016/j.psyneuen.2016.07.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCrory EJ, Gerin MI, Viding E (2017) Annual Research Review: childhood maltreatment, latent vulnerability and the shift to preventative psychiatry - the contribution of functional brain imaging. J Child Psychol Psychiatry 58(4):338–357. https://doi.org/10.1111/jcpp.12713

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berens AE, Jensen SKG, Nelson CA 3rd (2017) Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med 15(1):135. https://doi.org/10.1186/s12916-017-0895-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cassiers LLM, Sabbe BGC, Schmaal L, Veltman DJ, Penninx B, Van Den Eede F (2018) Structural and functional brain abnormalities associated with exposure to different childhood trauma subtypes: a systematic review of neuroimaging findings. Front Psychiatry 9:329. https://doi.org/10.3389/fpsyt.2018.00329

    Article  PubMed  PubMed Central  Google Scholar 

  31. Herzberg MP, Gunnar MR (2020) Early life stress and brain function: activity and connectivity associated with processing emotion and reward. NeuriImage 209:116493. https://doi.org/10.1016/j.neuroimage.2019.116493

    Article  Google Scholar 

  32. Aas M, Kauppi K, Brandt CL, Tesli M, Kaufmann T, Steen NE, Agartz I, Westlye LT, Andreassen OA, Melle I (2017) Childhood trauma is associated with increased brain responses to emotionally negative as compared with positive faces in patients with psychotic disorders. Psychol Med 47(4):669–679. https://doi.org/10.1017/S0033291716002762

    Article  CAS  PubMed  Google Scholar 

  33. Cancel A, Comte M, Boutet C, Schneider FC, Rousseau PF, Boukezzi S, Gay A, Sigaud T, Massoubre C, Berna F, Zendjidjian XY, Azorin JM, Blin O, Fakra E (2017) Childhood trauma and emotional processing circuits in schizophrenia: a functional connectivity study. Schizophr Res 184:69–72. https://doi.org/10.1016/j.schres.2016.12.003

    Article  PubMed  Google Scholar 

  34. Delvecchio G, Sugranyes G, Frangou S (2013) Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. Psychol Med 43(3):553–569. https://doi.org/10.1017/S0033291712001432

    Article  CAS  PubMed  Google Scholar 

  35. W.H.O. (2008) ICD-10: International statistical classification of diseases and related health problems, 10th edn. World Health Organization, New York

    Google Scholar 

  36. Mitchell PB, Johnston AK, Corry J, Ball JR, Malhi GS (2009) Characteristics of bipolar disorder in an Australian specialist outpatient clinic: comparison across large datasets. Aust N Z J Psychiatry 43(2):1009–1017

    Article  Google Scholar 

  37. Loughland C, Draganic D, McCabe K, Richards J, Nasir A, Allen J, Catts S, Jablensky A, Henskens F, Michie P, Mowry B, Pantelis C, Schall U, Scott R, Tooney P, Carr V (2010) Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. Aust N Z J Psychiatry 44(11):1029–1035. https://doi.org/10.3109/00048674.2010.501758

    Article  PubMed  Google Scholar 

  38. McGuffin P, Farmer A (1991) A polydiagnostic application of operational criteria in studies of psychotic illness: development and validation of the OPCRIT system. Arch Gen Psychiatry 48:764–770

    Article  CAS  Google Scholar 

  39. Castle DJ, Jablensky A, McGrath JJ, Carr V, Morgan V, Waterreus A, Valuri G, Stain H, McGuffin P, Farmer A (2006) The diagnostic interview for psychoses (DIP): development, reliability and applications. Psychol Med 36(1):69–80

    Article  CAS  Google Scholar 

  40. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janvas J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33

    PubMed  Google Scholar 

  41. Kay SR, Opler LA, Lindenmayer J-P (1989) The positive and negative syndrome scale (PANSS): rationale and standardisation. Br J Psychiatry 155(Suppl 7):59–65

    Article  Google Scholar 

  42. Montgomery P, Asberg B (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389

    Article  CAS  Google Scholar 

  43. Berk M, Malhi GS, Cahill C, Carman AC, Hadzi-Pavlovic D, Hawkins MT, Tohen M, Mitchell PB (2007) The bipolar depression rating scale (BDRS): its development, validation and utility. Bipolar Disord 9(6):571–579

    Article  Google Scholar 

  44. Lovibond SH, Lovibond PF (1995) The DASS: manual for the depression, anxiety stress scales, 2nd edn. Psychology Foundation of Australia, Sydney

    Google Scholar 

  45. Young RC, Biggs JT, Ziegler VE, Meyer DA (1978) A rating scale for mania: reliability, validity, and sensitivity. Br J Psychiatry 133:429–435

    Article  CAS  Google Scholar 

  46. Bauer MS, Crits-Christoph P, Ball WA, Dewees E et al (1991) Independent assessment of manic and depressive symptoms by self-rating: scale characteristics and implications for the study of mania. Arch Gen Psychiatry 48(9):807–812

    Article  CAS  Google Scholar 

  47. Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361(9369):1581–1589. https://doi.org/10.1016/S0140-6736(03)13306-5

    Article  CAS  PubMed  Google Scholar 

  48. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667

    Article  CAS  Google Scholar 

  49. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, Stokes J, Handelsman L, Medrano M, Desmond D, Zule W (2003) Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl 27(2):169–190

    Article  Google Scholar 

  50. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141. https://doi.org/10.1089/brain.2012.0073

    Article  PubMed  Google Scholar 

  51. McLaren DG, Ries ML, Xu G, Johnson SC (2012) A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuriImage 61(4):1277–1286. https://doi.org/10.1016/j.neuroimage.2012.03.068

    Article  Google Scholar 

  52. Nashiro K, Sakaki M, Mather M (2012) Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation? Gerontology 58(2):156–163. https://doi.org/10.1159/000328465

    Article  PubMed  Google Scholar 

  53. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci 34(6):418–432

    PubMed  PubMed Central  Google Scholar 

  54. Whittle S, Yucel M, Yap MB, Allen NB (2011) Sex differences in the neural correlates of emotion: evidence from neuroimaging. Biol Psychol 87(3):319–333. https://doi.org/10.1016/j.biopsycho.2011.05.003

    Article  PubMed  Google Scholar 

  55. Hayes AF (2017) Introduction to Mediation, Moderation, and Conditional Process Analysis, 2nd edn. Guilford Publications, A Regression-Based Approach

    Google Scholar 

  56. Craig AD (2005) Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci 9(12):566–571. https://doi.org/10.1016/j.tics.2005.10.005

    Article  PubMed  Google Scholar 

  57. Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70. https://doi.org/10.1038/nrn2555

    Article  CAS  PubMed  Google Scholar 

  58. Berret E, Kintscher M, Palchaudhuri S, Tang W, Osypenko D, Kochubey O, Schneggenburger R (2019) Insular cortex processes aversive somatosensory information and is crucial for threat learning. Science. https://doi.org/10.1126/science.aaw0474

    Article  PubMed  Google Scholar 

  59. Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, Goldey GJ, Diaz VE, Jikomes N, Resch JM, Lowell BB, Andermann ML (2017) Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 546(7660):611–616. https://doi.org/10.1038/nature22375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Torta DM, Cauda F (2011) Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. NeuriImage 56(4):2157–2172. https://doi.org/10.1016/j.neuroimage.2011.03.066

    Article  CAS  Google Scholar 

  61. De Bellis MD, Zisk A (2014) The biological effects of childhood trauma. Child Adolesc Psychiatr Clin N Am 23(2):185–222. https://doi.org/10.1016/j.chc.2014.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schulz A, Vogele C (2015) Interoception and stress. Front Psychol 6:993. https://doi.org/10.3389/fpsyg.2015.00993

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schaan VK, Schulz A, Rubel JA, Bernstein M, Domes G, Schachinger H, Vogele C (2019) Childhood trauma affects stress-related interoceptive accuracy. Front Psychiatry 10:750. https://doi.org/10.3389/fpsyt.2019.00750

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hartley CA, Phelps EA (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology 35(1):136–146. https://doi.org/10.1038/npp.2009.121

    Article  PubMed  Google Scholar 

  65. Marusak HA, Martin KR, Etkin A, Thomason ME (2015) Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology 40(5):1250–1258. https://doi.org/10.1038/npp.2014.311

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dinkelacker V, Gruter M, Klaver P, Gruter T, Specht K, Weis S, Kennerknecht I, Elger CE, Fernandez G (2011) Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry. J Neurol 258(5):770–782. https://doi.org/10.1007/s00415-010-5828-5

    Article  CAS  PubMed  Google Scholar 

  67. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16(1):55–61. https://doi.org/10.1038/nrn3857

    Article  CAS  PubMed  Google Scholar 

  68. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. https://doi.org/10.1073/pnas.0504136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22(1):158–165. https://doi.org/10.1093/cercor/bhr099

    Article  CAS  PubMed  Google Scholar 

  70. Fisher HL, Craig TK, Fearon P, Morgan K, Dazzan P, Lappin J, Hutchinson G, Doody GA, Jones PB, McGuffin P, Murray RM, Leff J, Morgan C (2011) Reliability and comparability of psychosis patients’ retrospective reports of childhood abuse. Schizophr Bull 37(3):546–553. https://doi.org/10.1093/schbul/sbp103

    Article  PubMed  Google Scholar 

  71. Boller B, Mellah S, Ducharme-Laliberte G, Belleville S (2017) Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults. Brain Imaging Behav 11(2):304–317. https://doi.org/10.1007/s11682-016-9621-7

    Article  PubMed  Google Scholar 

  72. Dedovic K, Renwick R, Mahani NK, Engert V, Lupien SJ, Pruessner JC (2005) The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci 30(5):319–325

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the volunteers who participated in this study. We would like to acknowledge Meelah Hamilton (now deceased) Jesseca Rowland, Nicholas Vella Inika Gillis and Nicole O’Reilly for assistance with data collection and entry. We acknowledge recruitment assistance from the Australian Schizophrenia Research Bank (ASRB), which was supported by the National Health and Medical Research Council of Australia (NHMRC) Enabling Grant (No. 386500), the Pratt Foundation, Ramsay Health Care, the Viertel Charitable Foundation and the Schizophrenia Research Institute.

Funding

This study was funded by Project Grants from the NHMRC (APP630471 and APP1081603), and the Macquarie University’s Australian Research Council (ARC) Centre of Excellence in Cognition and its Disorders (CE110001021). MJG was supported by the NMHRC’s R.D. Wright Biomedical Career Development Fellowship (APP1061875; 2014-17). OJW was supported by an Australian Government Research Training Program (RTP) Scholarship (administered by the University of New South Wales) and the Edward C Dunn Foundation Postgraduate Scholarship (administered by Neuroscience Research Australia; NeuRA). The funding bodies had no role in the decision to publish these results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Quidé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Human Research Ethics committees of the University of New South Wales (HC12384), the South East Sydney and Illawarra Area Health Service (HREC 09/081) and St Vincent’s Hospital (HREC/10/SVH/9).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quidé, Y., Girshkin, L., Watkeys, O.J. et al. The relationship between cortisol reactivity and emotional brain function is differently moderated by childhood trauma, in bipolar disorder, schizophrenia and healthy individuals. Eur Arch Psychiatry Clin Neurosci 271, 1089–1109 (2021). https://doi.org/10.1007/s00406-020-01190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01190-3

Keywords

Navigation