Skip to main content

Advertisement

Log in

Accelerated clinical decline in well-educated patients with frontotemporal lobar degenerations

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Education seems to protect against symptoms of neurodegeneration, but highly educated individuals experience faster cognitive decline after the onset of dementia. No studies on the effects of education on the clinical course in frontotemporal lobar degenerations (FTLD) exist. The aim of the study was to explore the effect of education on the rate of clinical deterioration in patients with FTLD. Thirty-five patients with FTLD were recruited and followed up for 20 months in average. A correlation was calculated between years of education and monthly rate of change on the clinical dementia rating scale sum of the boxes (CDR-SOB). A linear regression analysis with the CDR-SOB monthly rate of change as dependent, and the educational years and other variables possibly associated with the rate of clinical decline as independent variables was performed. There was a significant positive association between education and CDR-SOB monthly rate of change, indicating a faster decline in the well-educated. Education was the only significant predictor of clinical deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Anneser JM, Jox RJ, Borasio GD (2007) Inappropriate sexual behaviour in a case of ALS and FTD: successful treatment with sertraline. Amyotroph Lateral Scler 8:189–190

    Article  PubMed  CAS  Google Scholar 

  2. Bennett DA, Wilson RS, Schneider JA, Evans DA, Mendes de Leon CF, Arnold SE, Barnes LL, Bienias JL (2003) Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 60:1909–1915

    PubMed  CAS  Google Scholar 

  3. Borroni B, Grassi M, Agosti C, Premi E, Archetti S, Alberici A, Bellelli G, Caimi L, Di Luca M, Padovani A (2008) Establishing short-term prognosis in frontotemporal lobar degeneration spectrum: role of genetic background and clinical phenotype. Neurobiol Aging

  4. Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011

    PubMed  CAS  Google Scholar 

  5. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    PubMed  CAS  Google Scholar 

  6. Deakin JB, Rahman S, Nestor PJ, Hodges JR, Sahakian BJ (2004) Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology (Berl) 172:400–408

    Article  CAS  Google Scholar 

  7. Diehl-Schmid J, Forstl H, Perneczky R, Pohl C, Kurz A (2008) A 6-month, open-label study of memantine in patients with frontotemporal dementia. Int J Geriatr Psychiatry 23:754–759

    Article  PubMed  Google Scholar 

  8. Diehl-Schmid J, Pohl C, Perneczky R, Forstl H, Kurz A (2006) Behavioral disturbances in the course of frontotemporal dementia. Dement Geriatr Cogn Disord 22:352–357

    Article  PubMed  CAS  Google Scholar 

  9. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626

    PubMed  CAS  Google Scholar 

  10. Fellgiebel A, Muller MJ, Hiemke C, Bartenstein P, Schreckenberger M (2007) Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry 8:123–126

    Article  PubMed  Google Scholar 

  11. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  12. Graff-Radford NR, Ferman TJ, Lucas JA, Johnson HK, Parfitt FC, Heckman MG, Todd M, Sadowsky C, Epstein DE, Crook JE (2006) A cost effective method of identifying and recruiting persons over 80 free of dementia or mild cognitive impairment. Alzheimer Dis Assoc Disord 20:101–104

    Article  PubMed  Google Scholar 

  13. Haroutunian V, Purohit DP, Perl DP, Marin D, Khan K, Lantz M, Davis KL, Mohs RC (1999) Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Arch Neurol 56:713–718

    Article  PubMed  CAS  Google Scholar 

  14. Harvey RJ, Skelton-Robinson M, Rossor MN (2003) The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74:1206–1209

    Article  PubMed  CAS  Google Scholar 

  15. Hindmarch I, Lehfeld H, de Jongh P, Erzigkeit H (1998) The Bayer activities of daily living scale. Dement Geriatr Cogn Disord 9:20–26

    Article  PubMed  Google Scholar 

  16. Kertesz A, Davidson W, Fox H (1997) Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci 24:29–36

    PubMed  CAS  Google Scholar 

  17. Kertesz A, Morlog D, Light M, Blair M, Davidson W, Jesso S, Brashear R (2008) Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord 25:178–185

    Article  PubMed  CAS  Google Scholar 

  18. Kipps CM, Nestor PJ, Dawson CE, Mitchell J, Hodges JR (2008) Measuring progression in frontotemporal dementia: implications for therapeutic interventions. Neurology 70:2046–2052

    Article  PubMed  CAS  Google Scholar 

  19. Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257:271–280

    Article  PubMed  Google Scholar 

  20. Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ (2007) Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 257:281–289

    Article  PubMed  Google Scholar 

  21. Lebert F, Pasquier F (1999) Trazodone in the treatment of behaviour in frontotemporal dementia. Hum Psychopharmacol Clin Exp 14:279–281

    Article  CAS  Google Scholar 

  22. Lebert F, Stekke W, Hasenbroekx C, Pasquier F (2004) Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord 17:355–359

    Article  PubMed  CAS  Google Scholar 

  23. Mendez MF, Shapira JS, McMurtray A, Licht E (2007) Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry 15:84–87

    Article  PubMed  Google Scholar 

  24. Moretti R, Torre P, Antonello RM, Cazzato G, Bava A (2003) Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms. A randomized, controlled, open 14-month study. Eur Neurol 49:13–19

    Article  PubMed  CAS  Google Scholar 

  25. Moretti R, Torre P, Antonello RM, Cazzato G, Bava A (2003) Rivastigmine in subcortical vascular dementia: a randomized, controlled, open 12-month study in 208 patients. Am J Alzheimers Dis Other Demen 18:265–272

    Article  PubMed  Google Scholar 

  26. Moretti R, Torre P, Antonello RM, Cazzato G, Griggio S, Bava A (2003) Olanzapine as a treatment of neuropsychiatric disorders of Alzheimer’s disease and other dementias: a 24-month follow-up of 68 patients. Am J Alzheimers Dis Other Demen 18:205–214

    Article  PubMed  Google Scholar 

  27. Mortimer JA, Snowdon DA, Markesbery WR (2003) Head circumference, education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol 25:671–679

    Article  PubMed  Google Scholar 

  28. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  29. Ngandu T, von Strauss E, Helkala EL, Winblad B, Nissinen A, Tuomilehto J, Soininen H, Kivipelto M (2007) Education and dementia: what lies behind the association? Neurology 69:1442–1450

    Article  PubMed  CAS  Google Scholar 

  30. Perneczky R, Diehl-Schmid J, Drzezga A, Kurz A (2007) Brain reserve capacity in frontotemporal dementia: a voxel-based 18F-FDG PET study. Eur J Nucl Med Mol Imaging 34:1082–1087

    Article  PubMed  Google Scholar 

  31. Perneczky R, Diehl-Schmid J, Pohl C, Drzezga A, Kurz A (2007) Non-fluent progressive aphasia: cerebral metabolic patterns and brain reserve. Brain Res 1133:178–185

    Article  PubMed  CAS  Google Scholar 

  32. Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S, Grimmer T, Wagenpfeil S, Monsch A, Kurz A (2006) Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 77:1060–1063

    Article  PubMed  CAS  Google Scholar 

  33. Perneczky R, Hartmann J, Grimmer T, Drzezga A, Kurz A (2007) Cerebral metabolic correlates of the clinical dementia rating scale in mild cognitive impairment. J Geriatr Psychiatry Neurol 20:84–88

    Article  PubMed  Google Scholar 

  34. Perneczky R, Wagenpfeil S, Komossa K, Grimmer T, Diehl J, Kurz A (2006) Mapping scores onto stages: mini-mental state examination and clinical dementia rating. Am J Geriatr Psychiatry 14:139–144

    Article  PubMed  Google Scholar 

  35. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621

    PubMed  CAS  Google Scholar 

  36. Reitan R (1985) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  37. Rosen HJ, Narvaez JM, Hallam B, Kramer JH, Wyss-Coray C, Gearhart R, Johnson JK, Miller BL (2004) Neuropsychological and functional measures of severity in Alzheimer disease, frontotemporal dementia, and semantic dementia. Alzheimer Dis Assoc Disord 18:202–207

    PubMed  Google Scholar 

  38. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  PubMed  Google Scholar 

  39. Stern Y, Albert S, Tang MX, Tsai WY (1999) Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 53:1942–1947

    PubMed  CAS  Google Scholar 

  40. Swanberg MM (2007) Memantine for behavioral disturbances in frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord 21:164–166

    Article  PubMed  Google Scholar 

  41. Teri L, McCurry SM, Edland SD, Kukull WA, Larson EB (1995) Cognitive decline in Alzheimer’s disease: a longitudinal investigation of risk factors for accelerated decline. J Gerontol A Biol Sci Med Sci 50A:M49–M55

    PubMed  CAS  Google Scholar 

  42. Thalmann B, Monsch A (1997) CERAD. The Consortium to Establish a Registry for Alzheimer’s Disease. Neuropsychologische Testbatterie. Memory Clinic Basel, Basel

    Google Scholar 

  43. Valenzuela MJ, Sachdev P (2006) Brain reserve and cognitive decline: a non-parametric systematic review. Psychol Med 36:1–9

    Article  Google Scholar 

Download references

Acknowledgment

The study was sponsored by the Klinikum rechts der Isar München (grant N° 8765). The sponsors played no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and the preparation, review, or approval of the manuscript. The authors wish to thank Dorottya Ruisz for proofreading.

Conflict of interest statement

The authors do not report any conflicts of interest. Appropriate approval and procedures were used concerning subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Perneczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perneczky, R., Pohl, C., Bornschein, S. et al. Accelerated clinical decline in well-educated patients with frontotemporal lobar degenerations. Eur Arch Psychiatry Clin Neurosci 259, 362–367 (2009). https://doi.org/10.1007/s00406-009-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-009-0004-6

Keywords

Navigation