Skip to main content

Advertisement

Log in

MicroRNA-27a promotes tumorigenesis in tongue squamous cell carcinoma by enhancing proliferation, migration and suppressing apoptosis

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Tongue squamous cell carcinoma (TSCC) is a major subtype of head and neck squamous cell carcinoma (HNSCC), which is an intractable cancer with a poor prognosis. Studies have shown that microRNAs (miRNAs) play an important role in TSCC biology. However, the expression and functions of miRNAs in TSCC remain unclear.

Methods

The non-coding RNA profiles of TSCC were downloaded from the GEO database. WGCNA (Weighted gene co-expression network analysis) and differential expression miRNA (DE-miRNA) analyses were employed to identify key candidate miRNAs. miRNA expression was detected using RT-qPCR analysis. The target genes of key miRNAs were predicted. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to explore the potential functions and pathways of key miRNA. miRNA inhibitor was transfected to detect the function of miRNA. The effect of miRNA deregulation on TSCC cell proliferation and apoptosis was investigated using MTS, Annexin V-FITC/PI double staining, and flow cytometry assays.

Results

miR-27a was a key miRNA in TSCC, which was significantly up-regulated in both Cal-27 cells and malignant tissues from the TSCC patients. In addition, functional analysis showed that miR-27a was involved in the regulation of the MAPK, ERBB, and Jak-STAT signaling pathways. Moreover, RHOA and PRKACA were potential target genes of miR-27a, suggesting them as possible mediators of the tumor-promoting effect of miR-27a. Moreover, downregulation of miR-27a inhibited cell proliferation and facilitated cell apoptosis in Cal-27 cells.

Conclusion

Our findings strongly suggest that miR-27a could promote the tumorigenesis and development of TSCC, which makes it a potential new diagnostic marker and therapeutic target for TSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

Availability of data and materials

The non-coding RNA profiles of TSCC GSE28100 were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).

References

  1. Scheff NN, Ye Y, Bhattacharya A et al (2017) Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and associated inflammation. Pain 158(12):2396–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fatehi KS, Thiagarajan S, Dhar H, Chaukar D, DCruz AK (2019) Squamous cell carcinoma of the tongue in a patient with dyskeratosis congenita: a rare entity. Br J Oral Maxillofac Surg 57(1):79–81

    Article  CAS  PubMed  Google Scholar 

  3. Klingelhöffer C, Gründlinger A, Spanier G et al (2018) Patients with unilateral squamous cell carcinoma of the tongue and ipsilateral lymph node metastasis do not profit from bilateral neck dissection. Oral Maxillofac Surg 22(2):185–192

    Article  PubMed  Google Scholar 

  4. Sinha N, Rigby MH, McNeil ML et al (2018) The histologic risk model is a useful and inexpensive tool to assess risk of recurrence and death in stage I or II squamous cell carcinoma of tongue and floor of mouth. Mod Pathol 31(5):772–779

    Article  PubMed  Google Scholar 

  5. Rani P, Gupta AJ, Mehrol C, Singh M, Khurana N, Passey JC (2020) Clinicopathological correlation of tumor-stroma ratio and inflammatory cell infiltrate with tumor grade and lymph node metastasis in squamous cell carcinoma of buccal mucosa and tongue in 41 cases with review of literature. J Cancer Res Ther 16(3):445–451

    Article  CAS  PubMed  Google Scholar 

  6. Banikazemi Z, Haji HA, Mohammadi M et al (2018) Diet and cancer prevention: dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem 119(1):185–196

    Article  CAS  PubMed  Google Scholar 

  7. Keshavarzi M, Sorayayi S, Jafar Rezaei M et al (2017) MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J Cell Biochem 118(12):4121–4128

    Article  CAS  PubMed  Google Scholar 

  8. Zhang WC (2019) microRNAs tune oxidative stress in cancer therapeutic tolerance and resistance. Int J Mol Sci. https://doi.org/10.3390/ijms20236094

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moles R (2017) MicroRNAs-based therapy: a novel and promising strategy for cancer treatment. Microrna 6(2):102–109

    Article  CAS  PubMed  Google Scholar 

  10. Babaei K, Shams S, Keymoradzadeh A et al (2020) An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci 240:117077

    Article  CAS  PubMed  Google Scholar 

  11. Ohta K, Yoshimura H (2019) Squamous cell carcinoma of the dorsal tongue. CMAJ 191(47):E1310

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Liu J, Fu X, Yang A (2017) Identification of key genes and pathways in tongue squamous cell carcinoma using bioinformatics analysis. Med Sci Monit 23:5924–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steens S, Bekers EM, Weijs W et al (2017) Evaluation of tongue squamous cell carcinoma resection margins using ex-vivo MR. Int J Comput Assist Radiol Surg 12(5):821–828

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yao Y, Lin W, Zhang Y (2018) Fabrication of tongue extracellular matrix and reconstitution of tongue squamous cell carcinoma in vitro. J Vis Exp. https://doi.org/10.3791/57235

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23

    Article  PubMed  Google Scholar 

  16. Qadir MI, Faheem A (2017) miRNA: a diagnostic and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene Expr 27(3):197–204

    Article  PubMed  Google Scholar 

  17. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222

    Article  CAS  PubMed  Google Scholar 

  19. Javanmardi S, Aghamaali MR, Abolmaali SS, Mohammadi S, Tamaddon AM (2017) miR-21, an oncogenic target mirna for cancer therapy: molecular mechanisms and recent advancements in chemo and radio-resistance. Curr Gene Ther 16(6):375–389

    Article  PubMed  Google Scholar 

  20. Manfredi M, Brandi J, Di Carlo C et al (2019) Mining cancer biology through bioinformatic analysis of proteomic data. Expert Rev Proteomics 16(9):733–747

    Article  CAS  PubMed  Google Scholar 

  21. Huang X, Liu S, Wu L, Jiang M, Hou Y (2018) High throughput single cell rna sequencing, bioinformatics analysis and applications. Adv Exp Med Biol 1068:33–43

    Article  CAS  PubMed  Google Scholar 

  22. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  23. Yan H, Siu HC, Law S et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882-897.e11

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Mei X, Wang L, Yang X (2017) RhoA inhibits apoptosis and increases proliferation of cultured SPCA1 lung cancer cells. Mol Med Rep 15(6):3963–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalpana G, Figy C, Yeung M, Yeung KC (2019) Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Sci Rep 9(1):16351

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dopeso H, Rodrigues P, Bilic J et al (2018) Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer 118(1):106–116

    Article  CAS  PubMed  Google Scholar 

  27. Zhang GY, Yang WH, Chen Z (2016) Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells. Eur Rev Med Pharmacol Sci 20(10):2028–2037

    PubMed  Google Scholar 

  28. Song L, Guo Y, Xu B (2017) Expressions of Ras Homolog Gene Family, Member A (RhoA) and Cyclooxygenase-2 (COX-2) proteins in early gastric cancer and their role in the development of gastric cancer. Med Sci Monit 23:2979–2984

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singhi AD, Wood LD, Parks E et al (2020) Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 158(3):573–582

    Article  CAS  PubMed  Google Scholar 

  30. Vyas M, Hechtman JF, Zhang Y et al (2020) DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod Pathol 33(4):648–656

    Article  CAS  PubMed  Google Scholar 

  31. Kastenhuber ER, Lalazar G, Houlihan SL et al (2017) DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc Natl Acad Sci U S A 114(50):13076–13084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang F, Xie HY, Yang LF et al (2020) Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy 16(6):1061–1076

    Article  CAS  PubMed  Google Scholar 

  33. Wang B, Zhao CH, Sun G et al (2019) IL-17 induces the proliferation and migration of glioma cells through the activation of PI3K/Akt1/NF-κB-p65. Cancer Lett 447:93–104

    Article  CAS  PubMed  Google Scholar 

  34. Hu Z, Luo D, Wang D, Ma L, Zhao Y, Li L (2017) IL-17 Activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma. Cell Physiol Biochem 43(6):2379–2390

    Article  CAS  PubMed  Google Scholar 

  35. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 8(4):603–619

    Article  CAS  Google Scholar 

  36. Kaczanowski S (2016) Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 13(3):031001

    Article  PubMed  Google Scholar 

  37. Wang BQ, Yang B, Yang HC et al (2018) MicroRNA-499a decelerates glioma cell proliferation while accelerating apoptosis through the suppression of Notch1 and the MAPK signaling pathway. Brain Res Bull 142:96–106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: HC, KY, ZD. Administrative support: YC, YC. Collection and assembly of data: KY. Data analysis and interpretation: KY, PS. Manuscript writing: KY. Final approval of manuscript: All authors.

Corresponding author

Correspondence to Kaicheng Yang.

Ethics declarations

Ethics approval

The research protocol for this study was approved by the Ethics Committee of the Fourth Hospital of Hebei Medical University. Consent from all patients was obtained at the time of sample collection.

Consent for publication

The authors have no ethical, legal and financial conflicts related to the article. All authors read and approved the manuscript to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Dong, Z., Chen, Y. et al. MicroRNA-27a promotes tumorigenesis in tongue squamous cell carcinoma by enhancing proliferation, migration and suppressing apoptosis. Eur Arch Otorhinolaryngol 278, 4557–4567 (2021). https://doi.org/10.1007/s00405-021-06837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-06837-y

Keywords

Navigation