Skip to main content
Log in

A systematic review of current methodology of high resolution pharyngeal manometry with and without impedance

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

This systematic review appraises and summaries methodology documented in studies using high resolution pharyngeal manometry (HRM) with and without impedance technology (HRIM) in adult populations.

Methods

Four electronic databases CINAHL, EMBASE, MEDLINE, and Cochrane Library were searched up to, and including March 2017. Studies reporting pharyngeal HRM/HRIM for swallowing and/or phonatory assessment, published in peer-reviewed journals in English, German, or Spanish were assessed for the inclusion criteria. Of the selected studies, methodological aspects of data acquisition and analysis were extracted. Publications were graded based on their level of evidence and quality of methodological aspects was assessed.

Results

Sixty-two articles were identified eligible, from which 50 studies reported the use of HRM and 12 studies used HRIM. Of all included manuscripts, the majority utilized the ManoScan™ system (64.5%), a catheter diameter of 4.2 mm was most prevalently documented (30.6%). Most publications reported the application of topical anesthesia (53.2%). For data analysis in studies using HRM, software intrinsic to the recording system was reported most frequently (56%). A minority of the studies using HRM provided data about measurement reliability (10%). This is higher for studies using HRIM (50%).

Conclusions

Considerable methodological variability exists regarding data acquisition and analysis in published studies using HRM/HRIM. Lacking reports of methodology make study replications difficult and reduce the comparability across studies. More data regarding the impact of individual methodological aspects on study outcomes are further required for the development of methodological recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Original publication language: “Bestimmung anhand des “zentralen Sensors” im oÖS. Ein Druckabfall um 10% markierte den Beginn der Relaxationszeit, das Ende wurde bei Wiedererreichen des gleichen Druckes mit dem Eintreffen der pharyngealen Kontraktionswelle definiert.”

References

  1. Knigge MA, Thibeault S, McCulloch TM (2014) Implementation of high-resolution manometry in the clinical practice of speech language pathology. Dysphagia 29(1):2–16. https://doi.org/10.1007/s00455-013-9494-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Omari TI, Dejaeger E, van Beckevoort D, Goeleven A, Davidson GP, Dent J, Tack J, Rommel N (2011) A method to objectively assess swallow function in adults with suspected aspiration. Gastroenterology 140(5):1454–1463. https://doi.org/10.1053/j.gastro.2011.02.051

    Article  PubMed  Google Scholar 

  3. Meyer S, Jungheim M, Ptok M (2012) Ultra-Hochauflösungsmanometrie des oberen Ösophagussphinkters [High-resolution manometry of the upper esophageal sphincter]. HNO 60(4):318–326. https://doi.org/10.1007/s00106-011-2418-5

    Article  PubMed  CAS  Google Scholar 

  4. Jungheim M, Miller S, Ptok M (2013) Methodologische Aspekte zur Hochaufösungsmanometrie des Pharynx und des oberen Oesophagussphinkters [Methodological aspects of high resolution manometry of the pharynx and upper esophageal sphincter]. Laryngorhinootologie 92(3):158–164. https://doi.org/10.1055/s-0032-1330032

    Article  PubMed  CAS  Google Scholar 

  5. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC, Tugwell P, Moher D, Bouter LM (2007) Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  7. Howick J, Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, Dawes M (2009) Oxford centre for evidence-based medicine levels of evidence. http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 23 Oct 2017

  8. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  9. Juan J, Hind J, Jones C, McCulloch T, Gangnon R, Robbins J (2013) Case study: Application of isometric progressive resistance oropharyngeal therapy using the madison oral strengthening therapeutic device. Top Stroke Rehabil 20(5):450–470. https://doi.org/10.1310/tsr2005-450

    Article  PubMed  Google Scholar 

  10. Lan Y, Xu G, Dou Z, Wan G, Yu F, Lin T (2013) Biomechanical changes in the pharynx and upper esophageal sphincter after modified balloon dilatation in brainstem stroke patients with dysphagia. Neurogastroenterol Motil 25(12):e821–e829. https://doi.org/10.1111/nmo.12209

    Article  PubMed  CAS  Google Scholar 

  11. Lan Y, Xu G, Dou Z, Lin T, Yu F, Jiang L (2015) The correlation between manometric and videofluoroscopic measurements of the swallowing function in brainstem stroke patients with dysphagia. J Clin Gastroenterol 49(1):24–30. https://doi.org/10.1097/MCG.0000000000000100

    Article  PubMed  CAS  Google Scholar 

  12. Lee T, Sohn C, Yoon KJ, Lee YT, Park JH, Jung IS (2017) Failed deglutitive upper esophageal sphincter relaxation is a risk factor for aspiration in stroke patients with oropharyngeal dysphagia. J Neurogastroenterol Motil 23(1):34–40. https://doi.org/10.5056/jnm16028

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee TH, Lee JS, Hong SJ, Lee JS, Jeon SR, Kim WJ, Kim HG, Cho JY, Kim J-O, Cho J-H, Kim M-Y, Kwon SH (2014) Impedance analysis using high-resolution impedance manometry facilitates assessment of pharyngeal residue in patients with oropharyngeal Dysphagia. J Neurogastroenterol Motil 20(3):362–370. https://doi.org/10.5056/jnm14007

    Article  PubMed  PubMed Central  Google Scholar 

  14. Derrey S, Chastan N, Maltete D, Verin E, Dechelotte P, Lefaucheur R, Proust F, Freger P, Leroi AM, Weber J, Gourcerol G (2015) Impact of deep brain stimulation on pharyngo-esophageal motility: a randomized cross-over study. Neurogastroenterol Motil 27(9):1214–1222. https://doi.org/10.1111/nmo.12607

    Article  PubMed  CAS  Google Scholar 

  15. Jones CA, Ciucci MR (2016) Multimodal swallowing evaluation with high-resolution manometry reveals subtle swallowing changes in early and mid-stage Parkinson disease. J Parkinson’s Dis 6(1):197–208. https://doi.org/10.3233/JPD-150687

    Article  Google Scholar 

  16. Noh EJ, Park MI, Park SJ, Moon W, Jung HJ (2010) A case of amyotrophic lateral sclerosis presented as oropharyngeal Dysphagia. J Neurogastroenterol Moti 16(3):319–322. https://doi.org/10.5056/jnm.2010.16.3.319

    Article  Google Scholar 

  17. Takasaki K, Umeki H, Enatsu K, Kumagami H, Takahashi H (2010) Evaluation of swallowing pressure in a patient with amyotrophic lateral sclerosis before and after cricopharyngeal myotomy using high-resolution manometry system. Auris Nasus Larynx 37(5):644–647. https://doi.org/10.1016/j.anl.2010.02.003

    Article  PubMed  Google Scholar 

  18. Jungheim M, Kuhn D, Ptok M (2015) Hochauflösungsmanometrische Untersuchung der pharyngealen Funktion bei myotoner Dystrophie [High resolution manometry study of pharyngeal function in patients with myotonic dystrophy]. Nervenarzt 86(8):997–1006. https://doi.org/10.1007/s00115-015-4397-3

    Article  PubMed  CAS  Google Scholar 

  19. Lee TH, Lee JS, Kim WJ (2012) High resolution impedance manometric findings in dysphagia of Huntington’s disease. World J Gastroenterol 18(14):1695–1699. https://doi.org/10.3748/wjg.v18.i14.1695

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamaguchi N, Kaneko K, Komazawa O, Ishimaru K, Kumagami H, Takahashi H (2017) The influence of radiotherapy on swallowing pressure: a study of 10 laryngeal carcinoma patients using high-resolution manometry. Acta Medica Nagasakiensia 61(1):5–8. https://doi.org/10.11343/amn.61.5

    Article  Google Scholar 

  21. Szczesniak MM, Maclean J, Zhang T, Liu R, Cock C, Rommel N, Omari TI, Cook IJ (2015) Inter-rater reliability and validity of automated impedance manometry analysis and fluoroscopy in dysphagic patients after head and neck cancer radiotherapy. Neurogastroenterol Motil 27(8):1183–1189. https://doi.org/10.1111/nmo.12610

    Article  PubMed  CAS  Google Scholar 

  22. Menezes MA, Herbella FA, Patti MG (2015) High-resolution manometry evaluation of the pharynx and upper esophageal sphincter motility in patients with achalasia. J Gastrointest Surg 19(10):1753–1757. https://doi.org/10.1007/s11605-015-2901-5

    Article  PubMed  Google Scholar 

  23. Arenaz Bua B, Rydell R, Westin U, Olsson R (2016) The pharyngoesophageal segment in laryngectomees with non-functional voice: is it all about spasm? J Otol Rhinol 5(6):1–6. https://doi.org/10.4172/2324-8785.1000287

    Article  Google Scholar 

  24. Lippert D, Hoffman MR, Britt CJ, Jones CA, Hernandez J, Ciucci MR, McCulloch TM (2016) Preliminary evaluation of functional swallow after total laryngectomy using high-resolution manometry. Ann Otol Rhinol Laryngol 125(7):541–549. https://doi.org/10.1177/0003489416629978

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang T, Szczesniak M, Maclean J, Bertrand P, Wu PI, Omari T, Cook IJ (2016) Biomechanics of pharyngeal deglutitive function following total laryngectomy. Otolaryngol Head Neck Surg 155(2):295–302. https://doi.org/10.1177/0194599816639249

    Article  PubMed  Google Scholar 

  26. Jiang L, Wang Y, Li N, Qiu W, Wu H, Huo J, Dai M, Yu Y, Wan G Jr, Dou Z, Guo W (2017) Comprehensive swallowing exercises to treat complicated dysphagia caused by esophageal replacement with colon: a case report. Medicine (Baltimore) 96(6):e5707. https://doi.org/10.1097/MD.0000000000005707

    Article  Google Scholar 

  27. Oh Y, Lee ST, Ryu JS (2015) High resolution manometry analysis of a patient with dysphagia after occiput-C3/4 posterior fusion operation. Ann Rehabil Med 39(6):1028–1032. https://doi.org/10.5535/arm.2015.39.6.1028

    Article  PubMed  PubMed Central  Google Scholar 

  28. Geng Z, Hoffman MR, Jones CA, McCulloch TM, Jiang JJ (2013) Three-dimensional analysis of pharyngeal high-resolution manometry data. Laryngoscope 123(7):1746–1753. https://doi.org/10.1002/lary.23987

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoffman MR, Jones CA, Geng Z, Abelhalim SM, Walczak CC, Mitchell AR, Jiang JJ, McCulloch TM (2013) Classification of high-resolution manometry data according to videofluoroscopic parameters using pattern recognition. Otolaryngol Head Neck Surg 149(1):126–133. https://doi.org/10.1177/0194599813489506

    Article  PubMed  Google Scholar 

  30. Mielens JD, Hoffman MR, Ciucci MR, Jiang JJ, McCulloch TM (2011) Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. Dysphagia 26(1):3–12. https://doi.org/10.1007/s00455-010-9320-2

    Article  PubMed  Google Scholar 

  31. Mielens JD, Hoffman MR, Ciucci MR, McCulloch TM, Jiang JJ (2012) Application of classification models to pharyngeal high-resolution manometry. J Speech Lang Hear Res 55(3):892–902. https://doi.org/10.1044/1092-4388(2011/11-0088)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park D, Oh Y, Ryu JS (2016) Findings of abnormal videofluoroscopic swallowing study identified by high-resolution manometry parameters. Arch Phys Med Rehabil 97(3):421–428. https://doi.org/10.1016/j.apmr.2015.10.084

    Article  PubMed  Google Scholar 

  33. Park D, Shin CM, Ryu JS (2017) Effect of different viscosities on pharyngeal pressure during swallowing: a study using high-resolution manometry. Arch Phys Med Rehabil 98(3):487–494. https://doi.org/10.1016/j.apmr.2016.07.013

    Article  PubMed  Google Scholar 

  34. Park C-H, Lee Y-T, Yi Y, Lee J-S, Park JH, Yoon KJ (2017) Ability of high-resolution manometry to determine feeding method and to predict aspiration pneumonia in patients with dysphagia. Am J Gastroenterol 112:1074. https://doi.org/10.1038/ajg.2017.81

    Article  PubMed  Google Scholar 

  35. Ferris L, Omari T, Selleslagh M, Dejaeger E, Tack J, Vanbeckevoort D, Rommel N (2015) Pressure flow analysis in the assessment of preswallow pharyngeal bolus presence in Dysphagia. Int J Otolaryngol 2015:764709. https://doi.org/10.1155/2015/764709

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoffman MR, Mielens JD, Omari TI, Rommel N, Jiang JJ, McCulloch TM (2013) Artificial neural network classification of pharyngeal high-resolution manometry with impedance data. Laryngoscope 123(3):713–720. https://doi.org/10.1002/lary.23655

    Article  PubMed  Google Scholar 

  37. Lee TH, Lee JS, Park JW, Cho SJ, Hong SJ, Jeon SR, Kim WJ, Kim HG, Cho JY, Kim JO (2014) High-resolution impedance manometry facilitates assessment of pharyngeal residue and oropharyngeal dysphagic mechanisms. Dis Esophagus 27(3):220–229. https://doi.org/10.1111/dote.12101

    Article  PubMed  CAS  Google Scholar 

  38. Omari TI, Papathanasopoulos A, Dejaeger E, Wauters L, Scarpellini E, Vos R, Slootmaekers S, Seghers V, Cornelissen L, Goeleven A, Tack J, Rommel N (2011) Reproducibility and agreement of pharyngeal automated impedance manometry with videofluoroscopy. Clin Gastroenterol Hepatol 9(10):862–867. https://doi.org/10.1016/j.cgh.2011.05.026

    Article  PubMed  Google Scholar 

  39. Omari TI, Dejaeger E, Tack J, Vanbeckevoort D, Rommel N (2012) An impedance-manometry based method for non-radiological detection of pharyngeal postswallow residue. Neurogastroenterol Motil 24(7):e277–e284. https://doi.org/10.1111/j.1365-2982.2012.01931.x

    Article  PubMed  CAS  Google Scholar 

  40. Omari TI, Dejaeger E, Tack J, Van Beckevoort D, Rommel N (2013) Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad dysphagia patients. Dysphagia 28(2):146–152. https://doi.org/10.1007/s00455-012-9423-z

    Article  PubMed  Google Scholar 

  41. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Kahrilas PJ (2006) Deglutitive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid-state high-resolution manometry. Am J Physiol Gastrointest Liver Physiol 291(3):G525–G531. https://doi.org/10.1152/ajpgi.00081.2006

    Article  PubMed  CAS  Google Scholar 

  42. Hammer M, Jones C, Mielens J, Kim C, McCulloch T (2014) Evaluating the tongue-hold maneuver using high-resolution manometry and electromyography. Dysphagia 28(4):564–570. https://doi.org/10.1007/s00455-013-9496-3

    Article  Google Scholar 

  43. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM, Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM (2010) Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope 120(12):2367–2373. https://doi.org/10.1002/lary.21150

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hoffman MR, Mielens JD, Ciucci MR, Jones CA, Jiang JJ, McCulloch TM (2012) High-resolution manometry of pharyngeal swallow pressure events associated with effortful swallow and the Mendelsohn maneuver. Dysphagia 27(3):418–426. https://doi.org/10.1007/s00455-011-9385-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hutcheson KA, Hammer MJ, Rosen SP, Jones CA, McCulloch TM (2017) Expiratory muscle strength training evaluated with simultaneous high-resolution manometry and electromyography. Laryngoscope 127(4):797–804. https://doi.org/10.1002/lary.26397

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jungheim M, Schubert C, Miller S, Ptok M (2015) Normwerte fur die Hochaufloesungsmanometrie von Pharynx und oberem Oesophagussphinkter [Normative data of pharyngeal and upper esophageal sphincter high resolution manometry]. Laryngorhinootologie 94(9):601–608. https://doi.org/10.1055/s-0034-1395532

    Article  PubMed  CAS  Google Scholar 

  47. Jungheim M, Kallusky J, Ptok M (2017) Einfluss des Schluckvolumens auf die Pharynxdynamik, evaluiert mit dünnen Hochauflösungsmanometriesonden [Effect of bolus volume on pharyngeal swallowing dynamics evaluated with small high-resolution manometry catheters]. Laryngorhinootologie 26:112–117. https://doi.org/10.1055/s-0042-118231

    Article  Google Scholar 

  48. Kim CK, Ryu JS, Song SH, Koo JH, Lee KD, Park HS, Oh Y, Min K (2015) Effects of head rotation and head tilt on pharyngeal pressure events using high resolution manometry. Ann Rehabil Med 39(3):425–431. https://doi.org/10.5535/arm.2015.39.3.425

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lan Y, Xu GQ, Yu F, Lin T, Jiang LS, Liu F (2017) The effect of bolus consistency on swallowing function measured by high-resolution manometry in healthy volunteers. Laryngoscope 127(1):173–178. https://doi.org/10.1002/lary.26085

    Article  PubMed  Google Scholar 

  50. Lee TH, Lee JS, Hong SJ, Lee JS, Jeon SR, Kim WJ, Kim HG, Cho JY, Kim JO, Cho JH, Park WY, Park JW, Lee YG (2014) High-resolution manometry: reliability of automated analysis of upper esophageal sphincter relaxation parameters. Turk J Gastroenterol 25(5):473–480. https://doi.org/10.5152/tjg.2014.8021

    Article  PubMed  Google Scholar 

  51. Lin T, Xu G, Dou Z, Lan Y, Yu F, Jiang L (2014) Effect of bolus volume on pharyngeal swallowing assessed by high-resolution manometry. Physiol Behav 128:46–51. https://doi.org/10.1016/j.physbeh.2014.01.030

    Article  PubMed  CAS  Google Scholar 

  52. Matsubara K, Kumai Y, Samejima Y, Yumoto E (2014) Swallowing pressure and pressure profiles in young healthy adults. Laryngoscope 124(3):711–717. https://doi.org/10.1002/lary.24311

    Article  PubMed  Google Scholar 

  53. Matsubara K, Kumai Y, Samejima Y, Yumoto E (2015) Propagation curve and velocity of swallowing pressure in healthy young adults. Dysphagia 30(6):674–679. https://doi.org/10.1007/s00455-015-9643-0

    Article  PubMed  Google Scholar 

  54. Matsubara K, Kumai Y, Kamenosono Y, Samejima Y, Yumoto E (2016) Effect of three different chin-down maneuvers on swallowing pressure in healthy young adults. Laryngoscope 126(2):437–441. https://doi.org/10.1002/lary.25552

    Article  PubMed  Google Scholar 

  55. McCulloch TM, Hoffman MR, Ciucci MR (2010) High-resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol 119(6):369–376

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ryu JS, Park D, Oh Y, Lee ST, Kang JY (2016) The effects of bolus volume and texture on pharyngeal pressure events using high-resolution manometry and its comparison with videofluoroscopic swallowing study. J Neurogastroenterol Motil 22(2):231–239. https://doi.org/10.5056/jnm15095

    Article  PubMed  PubMed Central  Google Scholar 

  57. Doeltgen SH, Omari TI, Savilampi J (2016) Remifentanil alters sensory neuromodulation of swallowing in healthy volunteers: quantification by a novel pressure-impedance analysis. Am J Physiol Gastrointest Liver Physiol 310(11):G1176–G1182. https://doi.org/10.1152/ajpgi.00138.2016

    Article  PubMed  CAS  Google Scholar 

  58. Omari TI, Savilampi J, Kokkinn K, Schar M, Lamvik K, Doeltgen S, Cock C (2016) The reliability of pharyngeal high resolution manometry with impedance for derivation of measures of swallowing function in healthy volunteers. Int J Otolaryngol 2016:2718482. https://doi.org/10.1155/2016/2718482

    Article  PubMed  PubMed Central  Google Scholar 

  59. Omari T, Kritas S, Cock C (2012) New insights into pharyngo-esophageal bolus transport revealed by pressure-impedance measurement. Neurogastroenterol Motil 24(11):e549–e556. https://doi.org/10.1111/nmo.12007

    Article  PubMed  CAS  Google Scholar 

  60. Jungheim M, Miller S, Kuhn D, Ptok M (2013) Hochauflösungsmanometrie-basierte Phaseneinteilung des velopharyngealn Abschlusses bei Phonation [A phonation-related phase-model of the velopharyngeal closure based on high resolution manometry]. Laryngorhinootologie 92(10):667–672. https://doi.org/10.1055/s-0033-1349083

    Article  PubMed  CAS  Google Scholar 

  61. Knigge MA, Thibeault S (2016) Relationship between tongue base region pressures and vallecular clearance. Dysphagia 31(3):391–397. https://doi.org/10.1007/s00455-015-9688-0

    Article  PubMed  Google Scholar 

  62. Lamvik K, Guiu Hernandez E, Jones R, Huckabee ML (2016) Characterization and correction of pressure drift in the ManoScanTM high-resolution manometry system: In vitro and in vivo. Neurogastroenterol Motil 28(5):732–742. https://doi.org/10.1111/nmo.12770

    Article  PubMed  CAS  Google Scholar 

  63. Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ (2016) Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography—a normative study of younger and older adults. Neurogastroenterol Motil 28(5):721–731. https://doi.org/10.1111/nmo.12769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Silva LC, Herbella FA, Neves LR, Vicentine FP, Neto SP, Patti MG (2013) Anatomophysiology of the pharyngo-upper esophageal area in light of high-resolution manometry. J Gastrointest Surg 17(12):2033–2038. https://doi.org/10.1007/s11605-013-2358-3

    Article  PubMed  Google Scholar 

  65. Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H (2008) Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope 118(10):1729–1732

    Article  PubMed  Google Scholar 

  66. Takasaki K, Umeki H, Hara M, Kumagami H, Takahashi H (2011) Influence of effortful swallow on pharyngeal pressure: evaluation using a high-resolution manometry. Otolaryngol Head Neck Surg 144(1):16–20. https://doi.org/10.1177/0194599810390885

    Article  PubMed  Google Scholar 

  67. Umeki H, Takasaki K, Enatsu K, Tanaka F, Kumagami H, Takahashi H (2009) Effects of a tongue-holding maneuver during swallowing evaluated by high-resolution manometry. Otolaryngol Head Neck Surg 141(1):119–122. https://doi.org/10.1016/j.otohns.2009.01.025

    Article  PubMed  Google Scholar 

  68. Walczak CC, Jones CA, McCulloch TM (2017) Pharyngeal pressure and timing during bolus transit. Dysphagia 32(1):104–114. https://doi.org/10.1007/s00455-016-9743-5

    Article  PubMed  Google Scholar 

  69. Yoon KJ, Park JH, Jung IS (2014) Videofluoroscopic and manometric evaluation of pharyngeal and upper esophageal sphincter function during swallowing. J Neurogastroenterol Motil 20(3):352–361. https://doi.org/10.5056/jnm14021

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rosen SP, Abdelhalim SM, Jones CA, McCulloch TM (2018) Effect of body position on pharyngeal swallowing pressures using high-resolution manometry. Dysphagia 33(3):389–398

    Article  PubMed  Google Scholar 

  71. Guiu Hernandez E, Gozdzikowska K, Apperley O, Huckabee ML (2018) Effect of topical nasal anesthetic on swallowing in healthy adults: a double-blind, high-resolution manometry study. Laryngoscope 128(6):1335–1339. https://doi.org/10.1002/lary.26996

    Article  PubMed  Google Scholar 

  72. Gyawali CP, Bredenoord AJ, Conklin JL, Fox M, Pandolfino JE, Peters JH, Roman S, Staiano A, Vaezi MF (2013) Evaluation of esophageal motor function in clinical practice. Neurogastroenterol Motil 25(2):99–133. https://doi.org/10.1111/nmo.12071

    Article  PubMed  CAS  Google Scholar 

  73. Omari TI, Rommel N, Szczesniak MM, Fuentealba S, Dinning PG, Davidson GP, Cook IJ (2006) Assessment of intraluminal impedance for the detection of pharyngeal bolus flow during swallowing in healthy adults. Am J Physiol Gastrointest Liver Physiol 290(1):G183–G188. https://doi.org/10.1152/ajpgi.00011.2005

    Article  PubMed  CAS  Google Scholar 

  74. Omari TI (2018) Swallow gateway. https://www.swallowgateway.com. Accessed 21 Aug 2018

  75. Kahrilas PJ, Bredenoord AJ, Fox M, Gyawali CP, Roman S, Smout AJPM, Pandolfino JE, International High Resolution Manometry Working Group (2015) The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil 27(2):160–174. https://doi.org/10.1111/nmo.12477

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was funded, in part, by the Canterbury Medical Research Foundation PRO (16/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Winiker.

Ethics declarations

Conflict of interest

Canterbury Medical Research Foundation PRO(16/04). The grant funding was for partial salary. The funding body had no influence on the study design or on the study outcomes.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winiker, K., Gillman, A., Guiu Hernandez, E. et al. A systematic review of current methodology of high resolution pharyngeal manometry with and without impedance. Eur Arch Otorhinolaryngol 276, 631–645 (2019). https://doi.org/10.1007/s00405-018-5240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5240-9

Keywords

Navigation