Skip to main content

Advertisement

Log in

Laser-assisted cholesteatoma surgery: technical aspects, in vitro implementation and challenge of selective cell destruction

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Cholesteatoma is a destructive ear condition requiring complete surgical removal. One major problem lies in the frequent occurrence of residual cholesteatoma caused by squamous epithelium remaining in the middle ear. Our aim is to develop a laser treatment that is selectively directed against residual cholesteatoma cells and can be performed after cholesteatoma surgery in the same session. In a first trial, we studied the photodynamic effect of argon (AL) and diode lasers (DL) on cholesteatoma tissue. Intraoperatively harvested monolayer-cultured cholesteatoma cells were stained in vivo with different absorption enhancers: neutral red (NR), fluorescein diacetate (FDA), and indocyanine green (ICG). In vitro, staining tests on enhanced cellular dye absorption and laser tests were followed by cytotoxicity measurements to determine the respective amount of damage. To achieve selective cell destruction, antibody-mediated staining of cholesteatoma and middle ear mucosa cells was examined in a second trial. Cell cultures (cytospin and coverglass growing) and paraffin-embedded cholesteatoma tissue sections were studied immunohistochemically to determine the binding of monoclonal mouse antibodies against human cytokeratins CK5, CK10, CK14 and the epidermal growth factor receptor EGFR. Intracellular staining with absorption enhancers increased the optical density at the wavelength corresponding to the dye. Staining and subsequent laser irradiation destroyed up to 92% of cultured cholesteatoma cells. Unstained irradiated tissue was not affected. In cytospins, the antibody against CK5/6 showed strong staining of cholesteatoma and weak staining of mucosa cells. Reactivity for CK14 and EGFR was positive in both tissues. In coverglass cultures, staining of cholesteatoma cells was positive for CK5/6, CK14 and EGFR. Mucosa cells were positive for EGFR but negative for cytokeratins. Both cell types were negative for CK10. In embedded cholesteatoma tissue, CK5/6 and CK14 were localized in the basal layers of the matrix, while CK10 was situated in the suprabasal layers, and EGFR was present in all layers of the matrix and perimatrix. As for the technical aspects of laser-assisted cholesteatoma surgery, AL and DL have proved to be suitable devices; ICG and FDA are effective nontoxic absorption enhancers. The investigated antibodies against cytokeratins and EGFR show nonselective staining and thus appear to be inappropriate for avoiding unwanted cell damage. For safe and specific intraoperative application to intact tissue, the chromophore should be coupled to a particular antibody that binds solely to an easily accessible specific antigen at the surface of cholesteatoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abels C, Karrer S, Baumler W, Goetz AE, Landthaler M, Szeimies RM (1998) Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi’s sarcoma. Br J Cancer 77:1021–1024

    PubMed  CAS  Google Scholar 

  2. Arriaga MA, Dixon P (1998) Cytotoxicity of cytokeratin monoclonal antibody against keratinocytes: a possible therapeutic adjunct for cholesteatoma? Am J Otol 19:26–29

    PubMed  CAS  Google Scholar 

  3. Baumler W, Abels C, Karrer S, Weiss T, Messmann H, Landthaler M, Szeimies RM (1999) Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. Br J Cancer 80:360–363

    Article  PubMed  CAS  Google Scholar 

  4. Broekaert D, Cornille A, Eto H, Leigh I, Ramaekers F, Van Muijen G, Coucke P, De Bersaques J, Kluyskens P, Gillis E (1988) A comparative immunohistochemical study of cytokeratin and vimentin expression in middle ear mucosa and cholesteatoma, and in epidermis. Virchows Arch A Pathol Anat Histopathol 413:39–51

    Article  PubMed  CAS  Google Scholar 

  5. Bujia J, Kim C, Holly A, Sudhoff H, Ostos P, Kastenbauer E (1996) Epidermal growth factor receptor (EGF-R) in human middle ear cholesteatoma: an analysis of protein production and gene expression. Am J Otol 17:203–206

    PubMed  CAS  Google Scholar 

  6. De Corso E, Marchese MR, Scarano E, Paludetti G (2006) Aural acquired cholesteatoma in children: surgical findings, recurrence and functional results. Int J Pediatr Otorhinolaryngol 70:1269–1273

    Article  PubMed  Google Scholar 

  7. Dougherty TJ (2002) An update on photodynamic therapy applications. J Clin Laser Med Surg 20:3–7

    Article  PubMed  Google Scholar 

  8. Flock ST, Jacques SL (1993) Thermal-damage of blood-vessels in a rat skin-flap window chamber using indocyanine green and a pulsed Alexandrite laser—a feasibility study. Lasers Med Sci 8:185–196

    Article  Google Scholar 

  9. Frenz M (2007) Physical characteristics of various lasers used in stapes surgery. Adv Otorhinolaryngol 65:237–249

    PubMed  Google Scholar 

  10. Hamilton JW (2005) Efficacy of the KTP laser in the treatment of middle ear cholesteatoma. Otol Neurotol 26:135–139

    Article  PubMed  Google Scholar 

  11. Hsu YC, Ho KY, Chai CY, Lee KW, Wang LF, Wu SC, Kuo WR, Tsai SM (2003) Expression of epidermal growth factor receptor in human middle ear cholesteatoma. Kaohsiung J Med Sci 19:497–502

    Article  PubMed  CAS  Google Scholar 

  12. Ilgner J, Wehner M, Lorenzen J, Bovi M, Westhofen M (2006) Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles. J Biomed Opt 11:014004

    Article  PubMed  Google Scholar 

  13. Jackel MC, Martin A, Steiner W (2007) Twenty-five years experience with laser surgery for head and neck tumors: report of an international symposium, Gottingen, Germany, 2005. Eur Arch Otorhinolaryngol 264:577–585

    Article  PubMed  Google Scholar 

  14. Janda P, Sroka R, Baumgartner R, Grevers G, Leunig A (2001) Laser treatment of hyperplastic inferior nasal turbinates: a review. Lasers Surg Med 28:404–413

    Article  PubMed  CAS  Google Scholar 

  15. Jovanovic S (2007) Technical and clinical aspects of ‘one-shot’ CO(2) laser stapedotomy. Adv Otorhinolaryngol 65:255–266

    PubMed  CAS  Google Scholar 

  16. Jovanovic S, Schonfeld U, Scherer H (2004) CO2 laser stapedotomy with the “one-shot” technique—clinical results. Otolaryngol Head Neck Surg 131:750–757

    Article  PubMed  CAS  Google Scholar 

  17. Kaylie DM, Gardner EK, Jackson CG (2006) Revision chronic ear surgery. Otolaryngol Head Neck Surg 134:443–450

    Article  PubMed  Google Scholar 

  18. Korting HC, Schindler S, Hartinger A, Kerscher M, Angerpointner T, Maibach HI (1994) MTT-assay and neutral red release (NRR)-assay: relative role in the prediction of the irritancy potential of surfactants. Life Sci 55:533–540

    Article  PubMed  CAS  Google Scholar 

  19. Lepercque S, Broekaert D, Van Cauwenberge P (1993) Cytokeratin expression patterns in the human tympanic membrane and external ear canal. Eur Arch Otorhinolaryngol 250:78–81

    PubMed  CAS  Google Scholar 

  20. Liang J, Michaels L, Wright A (2003) Immunohistochemical characterization of the epidermoid formation in the middle ear. Laryngoscope 113:1007–1014

    Article  PubMed  Google Scholar 

  21. Lippert BM, Gottschlich S, Kulkens C, Folz BJ, Rudert H, Werner JA (2001) Experimental and clinical results of Er:YAG laser stapedotomy. Lasers Surg Med 28:11–17

    Article  PubMed  CAS  Google Scholar 

  22. Lund-Johansen P (1990) The dye dilution method for measurement of cardiac output. Eur Heart J 11(Suppl I):6–12

    PubMed  Google Scholar 

  23. Misiolek M, Ziora D, Namyslowski G, Misiolek H, Kucia J, Scierski W, Kozielski J, Warmuzinski K (2007) Long-term results in patients after combined laser total arytenoidectomy with posterior cordectomy for bilateral vocal cord paralysis. Eur Arch Otorhinolaryngol 264:895–900

    Article  PubMed  Google Scholar 

  24. Olszewska E, Sudhoff H (2007) Comparative cytokeratin distribution patterns in cholesteatoma epithelium. Histol Histopathol 22:37–42

    PubMed  CAS  Google Scholar 

  25. Palumbo G (2007) Photodynamic therapy and cancer: a brief sightseeing tour. Expert Opin Drug Deliv 4:131–148

    Article  PubMed  CAS  Google Scholar 

  26. Raslan W, Wiet RJ, Rybak LP (1989) Lessening cholesteatoma residual with laser: an experimental study. In: Tos M, Thomsen J, Peitersen E (eds) Proceedings of the third international conference on cholesteatoma and mastoid surgery, Copenhagen, 1988. Kugler, Amsterdam, pp 761–767

  27. Reuter CW, Morgan MA, Eckardt A (2007) Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br J Cancer 96:408–416

    Article  PubMed  CAS  Google Scholar 

  28. Schindler S, Lanser MJ (1989) The surgical management of cholesteatoma. In: Tos M, Thomsen J, Peitersen E (eds) Proceedings of the third international conference on cholesteatoma and mastoid surgery, Copenhagen, 1988. Kugler, Amsterdam, pp 769–778

  29. Sheehy JL, Brackmann DE, Graham MD (1977) Cholesteatoma surgery: residual and recurrent disease. A review of 1,024 cases. Ann Otol Rhinol Laryngol 86:451–462

    PubMed  CAS  Google Scholar 

  30. Strunk CL Jr, Quinn FB Jr (1993) Stapedectomy surgery in residency: KTP-532 laser versus argon laser. Am J Otol 14:113–117

    PubMed  Google Scholar 

  31. Sudhoff H, Borkowski G, Bujia J, Hildmann H, Fisseler-Eckhoff A (1997) Immunohistochemical studies with middle ear mucosal remnants in cholesteatoma. HNO 45:630–635

    Article  PubMed  CAS  Google Scholar 

  32. Teatini GP, Perria C, Iori G, Meloni F, Tanda F (1989) Hematoporphyrin uptake by experimentally induced cholesteatomas in an animal model. Arch Otorhinolaryngol 246:53–55

    Article  PubMed  CAS  Google Scholar 

  33. VanderWerf QM, Castro DJ, Nguyen RD, Paiva MB, Chao KH, Santillanes ME, Saxton RE (1997) KTP laser and neutral red phototherapy of human squamous cell carcinoma. Laryngoscope 107:316–320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp P. Caffier.

Additional information

The authors confirm the absence of financial involvement in any organization with a direct commercial interest and the absence of any off-label or investigational use.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffier, P.P., Marzahn, U., Franke, A. et al. Laser-assisted cholesteatoma surgery: technical aspects, in vitro implementation and challenge of selective cell destruction. Eur Arch Otorhinolaryngol 265, 1179–1188 (2008). https://doi.org/10.1007/s00405-008-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-008-0602-3

Keywords

Navigation