Skip to main content

Advertisement

Log in

Decreased Endothelial Progenitor Cells (EPCs) and increased Natural Killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case-control analysis

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Endothelial Progenitor Cells (EPCs) and Natural Killer (NK) cells were recently advocates in the pathogenesis of preeclampsia (PE), since they can be mobilized into the bloodstream and may orchestrate vascular endothelium function. The aim of our study was to evaluate in early pregnancy circulating EPCs and NK cells in peripheral blood in women who later developed PE compared to uncomplicated pregnancies.

Methods

We prospectively enrolled pregnant women at 9+0–11+6 weeks of gestation at the time of first-trimester integrated screening for trisomy 21, who underwent peripheral venous blood (20 mL) sample. We included only women who later developed PE (cases) and women with uncomplicated pregnancy (controls), matched for maternal age, parity, and Body Mass Index. In these groups, we evaluated the levels of CD16+CD45+CD56+ NK cells and CD34+CD133+VEGF-R2+ EPCs in peripheral blood samples previously stored.

Results

EPCs were significantly lower (p < 0.001), whereas NK cells were significantly higher (p < 0.001) in PE group compared to uncomplicated pregnancies during the first trimester.

Conclusion

The evaluation of EPCs and NK cells in peripheral blood during the first trimester may be considered an effective screening for the early identification of women at risk of developing PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tranquilli AL, Dekker G, Magee L et al (2014) The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens 4:97–104. doi:10.1016/j.preghy.2014.02.001

    CAS  PubMed  Google Scholar 

  2. Hutcheon JA, Lisonkova S, Joseph KS (2011) Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 25:391–403. doi:10.1016/j.bpobgyn.2011.01.006

    Article  PubMed  Google Scholar 

  3. Roberts JM, Pearson GD, Cutler JA, Lindheimer MD (2003) Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertens Pregnancy 22:109–127. doi:10.1081/PRG-120016792

    Article  PubMed  Google Scholar 

  4. Granger JP, LaMarca BB, Cockrell K et al (2006) Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med 122:383–392

    PubMed  Google Scholar 

  5. Tan MY, Wright D, Koutoulas L et al (2016) Comparison of screening for preeclampsia at 31–34 weeks’ gestation by the sFLT to PLGF ratio and a method combining maternal factors with sFLT-1 and PLGF. Ultrasound Obstet Gynecol. doi:10.1002/uog.17307

    Google Scholar 

  6. Laganà AS, Favilli A, Triolo O et al (2016) Early serum markers of preeclampsia: are we stepping forward? J Matern Fetal Neonatal Med 29:3019–3023. doi:10.3109/14767058.2015.1113522

    PubMed  Google Scholar 

  7. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353. doi:10.1161/01.RES.0000137877.89448.78

    Article  CAS  PubMed  Google Scholar 

  8. Hubel CA, Sipos PI, Crocker IP (2011) Endothelial progenitor cells: their potential role in pregnancy and preeclampsia. Pregnancy Hypertens 1:48–58. doi:10.1016/j.preghy.2010.11.001

    PubMed  Google Scholar 

  9. Lowe DT (2000) Nitric oxide dysfunction in the pathophysiology of preeclampsia. Nitric Oxide 4:441–458. doi:10.1006/niox.2000.0296

    Article  CAS  PubMed  Google Scholar 

  10. Aicher A, Heeschen C, Mildner-Rihm C et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376. doi:10.1038/nm948

    Article  CAS  PubMed  Google Scholar 

  11. Zhu J, Cheng X, Wang Q et al (2015) Transplantation of endothelial progenitor cells for improving placental perfusion in preeclamptic rats. Arch Gynecol Obstet 291:1113–1119. doi:10.1007/s00404-014-3522-z

    Article  CAS  PubMed  Google Scholar 

  12. Masuda H, Tanaka R, Fujimura S et al (2014) Vasculogenic conditioning of peripheral blood mononuclear cells promotes endothelial progenitor cell expansion and phenotype transition of anti-inflammatory macrophage and T lymphocyte to cells with regenerative potential. J Am Heart Assoc 3:e000743–e000743. doi:10.1161/JAHA.113.000743

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bonney EA (2016) Immune regulation in pregnancy. Obstet Gynecol Clin North Am 43:679–698. doi:10.1016/j.ogc.2016.07.004

    Article  PubMed  Google Scholar 

  14. Kieffer TEC, Faas MM, Scherjon SA, Prins JR (2017) Pregnancy persistently affects memory T cell populations. J Reprod Immunol 119:1–8. doi:10.1016/j.jri.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Laganà AS, Triolo O, Salmeri FM et al (2016) Natural Killer T cell subsets in eutopic and ectopic endometrium: a fresh look to a busy corner. Arch Gynecol Obstet 293:941–949. doi:10.1007/s00404-015-4004-7

    Article  PubMed  Google Scholar 

  16. Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663. doi:10.1038/nri886

    Article  CAS  PubMed  Google Scholar 

  17. Vacca P, Vitale C, Montaldo E et al (2011) CD34 + hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci USA 108:2402–2407. doi:10.1073/pnas.1016257108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riedhammer C, Halbritter D, Weissert R (2016) Peripheral blood mononuclear cells: isolation, freezing, thawing, and culture. Methods Mol Biol 1304:53–61. doi:10.1007/7651_2014_99

    Article  PubMed  Google Scholar 

  19. Bryceson YT, Fauriat C, Nunes JM et al (2010) Functional analysis of human NK cells by flow cytometry. Methods Mol Biol 612:335–352. doi:10.1007/978-1-60761-362-6_23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rustemeyer P, Wittkowski W, Jurk K, Koller A (2006) Optimized flow cytometric analysis of endothelial progenitor cells in peripheral blood. J Immunoass Immunochem 27:77–88. doi:10.1080/15321810500403789

    Article  CAS  Google Scholar 

  21. Matsubara K, Abe E, Matsubara Y et al (2006) Circulating endothelial progenitor cells during normal pregnancy and pre-eclampsia. Am J Reprod Immunol 56:79–85. doi:10.1111/j.1600-0897.2006.00387.x

    Article  CAS  PubMed  Google Scholar 

  22. Sibai BM (2005) Diagnosis, prevention, and management of eclampsia. Obstet Gynecol 105:402–410. doi:10.1097/01.AOG.0000152351.13671.99

    Article  PubMed  Google Scholar 

  23. Hur J, Yoon CH, Kim HS et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293. doi:10.1161/01.ATV.0000114236.77009.06

    Article  CAS  PubMed  Google Scholar 

  24. Leu S, Day Y-J, Sun C-K, Yip H-K (2016) tPA-MMP-9 axis plays a pivotal role in mobilization of endothelial progenitor cells from bone marrow to circulation and ischemic region for angiogenesis. Stem Cells Int 2016:5417565. doi:10.1155/2016/5417565

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gammill HS, Lin C, Hubel CA (2007) Endothelial progenitor cells and preeclampsia. Front Biosci 12:2383–2394

    Article  CAS  PubMed  Google Scholar 

  26. Hu Y, Liu X, Liu X et al (2016) Role of axl in preeclamptic EPCs functions. J Huazhong Univ Sci Technolog Med Sci 36:395–401. doi:10.1007/s11596-016-1598-3

    Article  CAS  PubMed  Google Scholar 

  27. Sugawara J, Mitsui-Saito M, Hayashi C et al (2005) Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. J Clin Endocrinol Metab 90:5329–5332. doi:10.1210/jc.2005-0532

    Article  CAS  PubMed  Google Scholar 

  28. Parham P (2004) NK cells and trophoblasts: partners in pregnancy. J Exp Med 200:951–955. doi:10.1084/jem.20041783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kopcow HD, Allan DSJ, Chen X et al (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 102:15563–15568. doi:10.1073/pnas.0507835102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Molvarec A, Ito M, Shima T et al (2010) Decreased proportion of peripheral blood vascular endothelial growth factor-expressing T and natural killer cells in preeclampsia. Am J Obstet Gynecol 203(567):e1–e8. doi:10.1016/j.ajog.2010.07.019

    Google Scholar 

  31. Molvarec A, Blois SM, Stenczer B et al (2011) Peripheral blood galectin-1-expressing T and natural killer cells in normal pregnancy and preeclampsia. Clin Immunol 139:48–56. doi:10.1016/j.clim.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  32. Fukui A, Yokota M, Funamizu A et al (2012) Changes of NK Cells in Preeclampsia. Am J Reprod Immunol 67:278–286. doi:10.1111/j.1600-0897.2012.01120.x

    Article  CAS  PubMed  Google Scholar 

  33. Heimrath J, Paprocka M, Czekanski A et al (2014) Pregnancy-induced hypertension is accompanied by decreased number of circulating endothelial cells and circulating endothelial progenitor cells. Arch Immunol Ther Exp (Warsz) 62:353–356. doi:10.1007/s00005-014-0278-x

    Article  Google Scholar 

  34. Ribatti D, Moschetta M, Vacca A (2014) Microenvironment and multiple myeloma spread. Thromb Res 133(Suppl 2):S102–S106. doi:10.1016/S0049-3848(14)50017-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Simone Laganà.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laganà, A.S., Giordano, D., Loddo, S. et al. Decreased Endothelial Progenitor Cells (EPCs) and increased Natural Killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case-control analysis. Arch Gynecol Obstet 295, 867–872 (2017). https://doi.org/10.1007/s00404-017-4296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-017-4296-x

Keywords

Navigation