Skip to main content
Log in

Variability of total thiol compounds, oxidative and nitrosative stress in uncomplicated pregnant women and nonpregnant women

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to determine the changes in total plasma thiols (homocysteine, cysteine and cysteinylglycine), lipid peroxidation and nitric oxide concentrations during normal pregnancy.

Methods

These variables were measured in 28 uncomplicated pregnant women at first, second and third trimesters and in 19 nonpregnant women.

Results

The mean concentrations of homocysteine, cysteine and cysteinylglycine were significantly lower in all trimesters of pregnancy compared with nonpregnant controls. There was significant elevation in serum lipid peroxidation levels of pregnant women within first and third trimesters compared with nonpregnant women. In spite of increase in mean nitric oxide levels in pregnant women, this increase did not reach statistically significant levels.

Conclusion

This study provides information about the changes in plasma levels of many variables having important role in pregnancy complication during all trimesters in uncomplicated pregnancy compared with nonpregnant women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genoveva M, Gomez M, Hicks J (1999) Nitric oxide as a regulator of hemodynamic changes in pregnancy. Gynecol Obstet Mex 67:29–36

    Google Scholar 

  2. Ghasemi A, Asl SZ, Mehrabi Y, Saadat N, Azizi F (2008) Serum nitric oxide metabolite levels in a general healthy population: relation to sex and age. Life Sci 83:326–331

    Article  PubMed  CAS  Google Scholar 

  3. Münzel T, Sinning C, Post F, Warnholtz A, Schulz E (2008) Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med 40:180–196

    Article  PubMed  Google Scholar 

  4. Raijmakers MTM, Zusterzeel PLM, Roes EM, Steegers EAP, Mulder TPJ, Peters WHM (2001) Oxidized and free whole blood thiols in preeclampsia. Obstet Gynecol 97:272–276

    Article  PubMed  CAS  Google Scholar 

  5. Ouyang YQ, Li SJ, Zhang Q, Cai HB, Chen HP (2009) Interactions between inflammatory and oxidative stress in preeclampsia. Hypertens Pregnancy 28:56–62

    Article  PubMed  CAS  Google Scholar 

  6. Ueland PM, Mansoor MA, Guttormsen AB, Müller F, Aukrust P, Refsum H, Svardal AM (1996) Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status—a possible element of the extracellular antioxidant defense system. J Nutr 126:1281S–1284S

    PubMed  CAS  Google Scholar 

  7. Ueland PM (1995) Homocysteine species as components of plasma redox thiol status. Clin Chem 41:340–342

    PubMed  CAS  Google Scholar 

  8. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91:308–318

    Article  PubMed  CAS  Google Scholar 

  9. Cook JW, Taylor LM, Orloff SL, Landry GJ, Moneta GL, Porter JM (2002) Homocysteine and arterial disease experimental mechanisms. Vascular Pharmacol 38:293–300

    Article  CAS  Google Scholar 

  10. Laraqui A, Allami A, Carrie A, Raisonnier A, Coiffard AS, benkouka F, Bendriss A, Benjouad A, Bennouar N, El Kadiri N, Benomar A, Fellat S, Benomar M (2007) Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. Eur J Int Med 18:474–483

    Article  CAS  Google Scholar 

  11. Gvindaiah V, Naushad SM, Prabhakara K, Krishna PC, Devi ARR (2009) Association of parental hyperhomocysteinemia and C677T methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clin Biochem 42:380–386

    Article  Google Scholar 

  12. Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077s

    PubMed  CAS  Google Scholar 

  13. Vester B, Rasmussen K (1991) High-performance liquid-chromatography method for rapid and accurate determination of homocysteine in plasma and serum. Eur J Clin Chem Clin Biochem 29:549–554

    PubMed  CAS  Google Scholar 

  14. Krijt J, Vackova M, Kozich V (2001) Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin Chem 47:1821–1828

    PubMed  CAS  Google Scholar 

  15. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  PubMed  CAS  Google Scholar 

  16. Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr 742:315–325

    Article  CAS  Google Scholar 

  17. Blom HJ, Smulders Y (2011) Overview of homocysteine and folate metabolism with special references to cardiovascular disease and neural tube defects. J Inherit Metab 34:75–81

    Article  CAS  Google Scholar 

  18. Seghieri G, Breschi MC, Anichini R, De Bellis A, Alviggi L, Maida I, Franconi F (2003) Serum homocysteine levels are increased in women with gestational diabetes mellitus. Metabolism 52:720–723

    Article  PubMed  CAS  Google Scholar 

  19. Kuo HK, Sorond FA, Chen JH, Hashmi A, Milberg WP, Lipsitz LA (2005) The role of homocysteine in multisystem age-related problems: a systematic review. J Gerontol Ser A-Biol Sci Medl Sci 60:1190–1201

    Article  Google Scholar 

  20. Ozkan Y, Yardım-Akaydın S, Fırat H, Çalışkan-Can E, Ardıç S, Şimşek B (2007) Usefulness of homocysteine as a cancer marker: total thiol compounds and folate levels in untreated lung cancer patients. Anticancer Res 27:1185–1190

    PubMed  CAS  Google Scholar 

  21. Guven MA, Kilinc M, Batukan C, Ekerbicer HC, Aksu T (2006) Elevated second trimester serum homocysteine levels in women with gestational diabetes mellitus. Arch Gynecol Obstet 274:333–337

    Article  PubMed  CAS  Google Scholar 

  22. Makedos G, Papanicolaou A, Hitoglou A, Kalogiannidis I, Makedos A, Vrazioti V, Goutzioulis M (2007) Homocysteine, folic acid and B12 serum levels in pregnancy complicated with preeclampsia. Arch Gynecol Obstet 275:121–124

    Article  PubMed  CAS  Google Scholar 

  23. Idzior-Walus B, Cyganek K, Sztefko K, Seghieri G, Breschi MC, Walus-Miarka M, Kawalec E, Seretny M, Sieradzki J (2008) Total plasma homocysteine correlates in women with gestational diabetes. Arch Gynecol Obstet 278:309–313

    Article  PubMed  CAS  Google Scholar 

  24. Mao D, Che J, Li K, Han S, Yue Q, Zhu L, zhang W, Li L (2010) Association of homocysteine, asymmetric dimethylarginine, and nitric oxide with preeclampsia. Arch Gynecol Obstet 282:371–375

    Article  PubMed  CAS  Google Scholar 

  25. Walker MC, Smith GN, Perkins SL, Keely EJ, Garner PR (1999) Changes in homocysteine levels during normal pregnancy. Am J Obstet Gynecol 180:660–664

    Article  PubMed  CAS  Google Scholar 

  26. Quinlivan EP, McPartlin J, Weir DG, Scoot JM (2000) Decreased serum homocysteine in pregnancy: possible role in methylation cycle regulation. Proc Nutr Soc 59:96A

    Google Scholar 

  27. Haliloglu B, Aksungur FB, Celik A, Ilter E, Coskuner H, Ozekici U (2010) Negative correlation between D-dimer and homocysteine levels during pregnancy and the postpartum period: a prospective study. Eur J Obstet Gynecol Reproduct Biol 153:23–26

    Article  CAS  Google Scholar 

  28. Hogg N (1999) The effect of cyst(e)ine on the auto-oxidation of homocysteine. Free Radic Biol Med 27:28–33

    Article  PubMed  CAS  Google Scholar 

  29. Toescu V, Nuttall SL, Martin U, Kendall MJ, Dunne F (2002) Oxidative stress and normal pregnancy. Clin Endocrinol 57:609–613

    Article  CAS  Google Scholar 

  30. Little RE, Gladen BC (1999) Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol 13:347–352

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Walsh SW, Gu J, Zhang J (1991) The imbalance between thromboxane and prostacyclin in preeclampsia is associated with an imbalance between lipid peroxides and vitamin E in maternal blood. Am J Obstet Gynecol 165:1695–1700

    PubMed  CAS  Google Scholar 

  32. Wisdom SJ, Wilson R, McKillop JH, Walker JJ (1991) Antioxidant systems in normal pregnancy and in pregnancy-induced hypertension. Am J Obstet Gynecol 165:1701–1704

    PubMed  CAS  Google Scholar 

  33. Kaur G, Mishra S, Sehgal A, Prasad R (2008) Alterations in lipid peroxidation and antioxidant status in pregnancy with preeclampsia. Mol Cell Biochem 313:37–44

    Article  PubMed  CAS  Google Scholar 

  34. Hung TH, Lo LM, Chiu TH, Li MJ, Yeh YL, Chen SF, Hsieh TT (2010) A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation. Reprod Sci 17:401–409

    Article  PubMed  CAS  Google Scholar 

  35. Siddiqui IM, Jaleel A, Tamimi W, Al Kadri HMF (2010) Role of oxidative stress in the pathogenesis of preeclampsia. Arch Gynecol Obstet 282:469–474

    Article  PubMed  CAS  Google Scholar 

  36. Karaçay Ö, Sepici-Dincel A, Karcaaltincaba D, Sahin D, Yalvaç S, Akyol M, Kandemir Ö, Altan N (2010) A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24–36 weeks of gestation. Diabetes Res Clin Pr 89:231–238

    Article  Google Scholar 

  37. Goodrum LA, Saade GR, Belfort MA, Moise KJ, Jahoor F (2003) Arginine flux and nitric oxide production during human pregnancy and postpartum. J Soc Gynecol Investig 10:400–405

    Article  PubMed  CAS  Google Scholar 

  38. Maul H, Longo M, Saade GR, Garfield RE (2003) Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Des 9:359–380

    Article  PubMed  CAS  Google Scholar 

  39. Kurpad AV, Kao C, Dwarkanath P, Muthayya S, Mhaskar A, Thomas A, Vaz M, Jahoor F (2009) In vivo arginine production and nitric oxide synthesis in pregnant Indian women with normal and low body mass indices. E J Clin Nutr 63:1091–1097

    Article  CAS  Google Scholar 

  40. McCord JM (1988) Free radicals and myocardial ischemia: overview and outlook. Free Radic Biol Med 4:9–14

    Article  PubMed  CAS  Google Scholar 

  41. Ferrari R, Ceconi C, Curello S, Cargnoni A, Alfieri O, Pardini A et al (1991) Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med 91:95–105

    Article  Google Scholar 

  42. Ferreira R, Milei J, Grana D (1999) Oxidative stress and ischemia–reperfusion injury in the heart. Asia Pac Heart J 8:97–101

    Article  Google Scholar 

  43. Lim KH, Friedman SA, Ecker JL, Kao L, Kilpatrick SJ (1998) The clinical utility of serum uric acid measurements in hypertensive diseases of pregnancy. Am J Obstet Gynecol 178:1067–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Gazi University Research Fund (Project No: 02/2001-22).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkan, Y., Yardim-Akaydin, S., Erdem, A. et al. Variability of total thiol compounds, oxidative and nitrosative stress in uncomplicated pregnant women and nonpregnant women. Arch Gynecol Obstet 285, 1319–1324 (2012). https://doi.org/10.1007/s00404-011-2150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-011-2150-0

Keywords

Navigation