Skip to main content

Advertisement

Log in

Molecular characterization of early adenocarcinoma of the uterine cervix by oligonucleotide microarray

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

In an attempt to understand the molecular characterization for the early adenocarcinoma of the uterine cervix, an analysis of gene expression profiles obtained from early adenocarcinoma of the uterine cervix was performed to find those genes most aberrantly expressed.

Methods and materials

Total RNA was prepared from 32 samples of early adenocarcinoma of the uterine cervix and 32 paired normal cervix tissues, and hybridized to cancer-associated oligonucleotide microarrays with probe sets complementary to about 1,426 transcripts.

Results

Supervised analysis of gene expression data identified 13 genes that exhibited >2-fold upregulation and 27 genes >2-fold downregulation, respectively, in early adenocarcinoma of the uterine cervix compared to normal cervix. Unsupervised hierarchical clustering of the expression data readily distinguished early adenocarcinoma of the uterine cervix from normal cervix. Two genes (karyopherin alpha 2 and proliferating cell nuclear antigen) were selected randomly for real-time reverse transcription polymerase chain reaction analysis. Both genes were expressed significantly higher in early adenocarcinoma of the uterine cervix than in normal cervix, with p = 0.0003 and <0.0001, respectively. These results were compatible with the microarray data.

Conclusions

This study has revealed several genes that may be highly attractive candidate molecular markers/targets for early adenocarcinoma of the uterine cervix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chi DS, Lanciano RM, Kudelka AP (2001) Cervical cancer. In: Cancer management: a multidisciplinary approach medical, surgical, radiation oncology, 5th edn. PRR Inc, New York, pp 359–384

  2. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics (2002). CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  3. Schiffman M, Castle PE, Jeronimo J et al (2007) Human papilloma virus and cervical cancer. Lancet 370:890–907

    Article  PubMed  CAS  Google Scholar 

  4. Chan PG, Sung HY, Sawaya GF (2003) Changes in cervical cancer incidence after three decades of screening US women less than 30 years old. Obstet Gynecol 102:765–773

    Article  PubMed  Google Scholar 

  5. Smith HO, Tiffany MF, Qualls CR, Key CR (2000) The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States: a 24-year population-based study. Gynecol Oncol 78:97–105

    Article  PubMed  CAS  Google Scholar 

  6. Schorge JO, Knowles LM, Lea JS (2004) Adenocarcinoma of the cervix. Curr Treat Options Oncol 5:119–127

    Article  PubMed  Google Scholar 

  7. Look KY, Brunetto VL, Clarke-Pearson DL, Averette HE, Major FJ, Alvarez RD, Homesley HD, Zaino RJ (1996) An analysis of cell type in patients with surgically staged stage IB carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol 63:304–311

    Article  PubMed  CAS  Google Scholar 

  8. Eifel PJ, Burke TW, Morris M, Smith TL (1995) Adenocarcinoma as an independent risk factor for disease recurrence in patients with stage IB cervical carcinoma. Gynecol Oncol 59:38–44

    Article  PubMed  CAS  Google Scholar 

  9. Schoolland M, Segal A, Allpress S, Miranda A, Frost FA, Sterrett GF (2002) Adenocarcinoma in situ of the cervix. Cancer 96:330–337

    Article  PubMed  Google Scholar 

  10. Lea JS, Sheets EE, Wenham RM, Duska LR, Coleman RL, Miller DS et al (2002) Stage IIB–IVB cervical adenocarcinoma: prognostic factors and survival. Gynecol Oncol 84:115–119

    Article  PubMed  Google Scholar 

  11. Shingleton HM, Gore H, Bradley DH, Soong SJ (1981) Adenocarcinoma of the cervix: I. Clinical evaluation and pathologic features. Am. J. Obstet. Gynecol 139:799–814

    PubMed  CAS  Google Scholar 

  12. Chao A, Wang TH, Lee YS, Hsueh S, Chao AS, Chang TC, Kung WH, Huang SL, Chao FY, Wei ML, Lai CH (2006) Molecular characterization of adenocarcinoma and squamous carcinoma of the uterine cervix using microarray analysis of gene expression. Int J Cancer 119(1):91–98

    Article  PubMed  CAS  Google Scholar 

  13. Contag SA, Gostout BS, Clayton AC, Dixon MH, McGovern RM, Calhoun ES (2004) Comparison of gene expression in squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol Oncol 95(3):610–617

    Article  PubMed  CAS  Google Scholar 

  14. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  15. Choi YW, Bae SM, Kim YW, Lee HN, Kim YW, Park TC, Ro DY, Shin JC, Shin SJ, Seo JS, Ahn WS (2007) Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J Gynecol Cancer 17(3):687–696

    Google Scholar 

  16. Beskow C, Skikuniene J, Holgersson A, Nilsson B, Lewensohn R, Kanter L, Viktorsson K (2009) Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br J Cancer 101(5):816–821

    Google Scholar 

  17. Yu YC, Li HM, Xin XY, Zhao HB, Li QL, Dang YL (2004) Expression and its clinical significance of p27 protein in cervical carcinoma tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, Chinese 20(6):730–732

    Google Scholar 

  18. Schindl M, Oberhuber G, Obermair A, Schoppmann SF, Karner B, Birner P (2001) Overexpression of Id-1 protein is a marker for unfavorable prognosis in early-stage cervical cancer. Cancer Res 61(15):5703–5706

    Google Scholar 

  19. Termini L, Boccardo E, Esteves GH, Hirata R Jr, Martins WK, Colo AE, Neves EJ, Villa LL, Reis LF (2008) Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment. BMC Med Genomics 1:29

  20. Chao A, Wang TH, Lai CH (2007) Overview of microarray analysis of gene expression and its applications to cervical cancer investigation. Taiwan J Obstet Gynecol 46(4):363–373

    Google Scholar 

  21. Yim EK, Tong SY, Ho EM, Bae JH, Um SJ, Park JS (2009) Anticancer effects on TACC3 by treatment of paclitaxel in HPV-18 positive cervical carcinoma cells. Oncol Rep 21(2):549–557

    Google Scholar 

  22. van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, Govender D, Birrer MJ, Leaner VD (2009) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124(8):1829–1840

    Google Scholar 

  23. Zempolich K, Fuhrman C, Milash B, Flinner R, Greven K, Ryu J, Forbes A, Kerlin K, Nichols RC, Gaffney DK (2008) Changes in gene expression induced by chemoradiation in advanced cervical carcinoma: a microarray study of RTOG C-0128. Gynecol Oncol 109(2):275–279

    Google Scholar 

  24. Carico E, Fulciniti F, Giovagnoli MR, Losito NS, Botti G, Benincasa G, Farnetano MG, Vecchione A (2009) Adhesion molecules and p16 expression in endocervical adenocarcinoma. Virchows Arch 455(3):245–251

    Google Scholar 

  25. Wong YF, Cheung TH, Tsao GS, Lo KW, Yim SF, Wang VW, Heung MM, Chan SC, Chan LK, Ho TW, Wong KW, Li C, Guo Y, Chung TK, Smith DI (2006) Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 118(10):2461–2469

    Google Scholar 

  26. Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM (2002) Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer 98:419–426

    Google Scholar 

  27. Kitahara O, Katagiri T, Tsunoda T, Harima Y, Nakamura Y (2002) Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4:295–303

    Google Scholar 

  28. Chen Y, Miller C, Mosher R, Zhao X, Deeds J, Morrissey M, Bryant B, Yang D, Meyer R, Cronin F, Gostout BS, Smith-McCune K et al (2003) Identification of cervical cancer markers by cDNA and tissue microarrays. Cancer Res 63:1927–1935

    Google Scholar 

  29. Wang JL, Zheng BY, Li XD, Angstrom T, Lindstrom MS, Wallin KL (2004) Predictive significance of the alterations of p16INK4A, p14ARF, p53, and proliferating cell nuclear antigen expression in the progression of cervical cancer. Clin Cancer Res 10:2407–2414

    Google Scholar 

  30. Trunk MJ, Dallenbach-Hellweg G, Ridder R, Petry KU, Ikenberg H, Schneider V, von Knebel Doeberitz M (2004) Morphologic characteristics of p16INK4a-positive cells in cervical cytology samples. Acta Cytol 48:771–782

    Google Scholar 

  31. Guipponi M, Deutsch S, Kohler K, Perroud N, Le Gal F, Vessaz M, Laforge T, Petit B, Jollant F, Guillaume S, Baud P, Courtet P, La Harpe R, Malafosse A (2009) Genetic and epigenetic analysis of SSAT gene dysregulation in suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 150B(6):799–807

    Google Scholar 

  32. Sun H, Liu B, Yang YP, Xu CX, Yan YF, Wang W, Liu XX (2008) Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro. Acta Pharmacol Sin 29(5):606–613

    Google Scholar 

  33. Babbar N, Ignatenko NA, Casero RA Jr, Gerner EW (2003) Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J Biol Chem 278(48):47762–47775

    Google Scholar 

  34. Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struc Biol 11:703–715

    Google Scholar 

  35. Leung SW, Harreman MT, Hodel MR, Hodel AE, Corbett AH (2003) Dissection of the karyopherin nuclear localization signal (NLS)-binding groove: functional requirements for NLS binding. J Biol Chem 278:41947–41953

    Google Scholar 

  36. Dahl E, Kristiansen G, Gottlob K, Klaman I, Ebner E, Hinzmann B, Hermann K, Pilarsky C, Dürst M, Klinkhammer-Schalke M, Blaszyk H, Knuechel R, Hartmann A, Rosenthal A, Wild PJ (2006) Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12(13):3950–3960

    Google Scholar 

  37. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Google Scholar 

  38. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    Google Scholar 

  39. Dankof A, Fritzsche FR, Dahl E, Pahl S, Wild P, Dietel M, Hartmann A, Kristiansen G (2007) KPNA2 protein expression in invasive breast carcinoma and matched peritumoral ductal carcinoma in situ. Virchows Arch 451(5):877–881

    Google Scholar 

  40. Gluz O, Wild P, Meiler R, Diallo-Danebrock R, Ting E, Mohrmann S, Schuett G, Dahl E, Fuchs T, Herr A, Gaumann A, Frick M, Poremba C, Nitz UA, Hartmann A (2008) Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123(6):1433–1438

    Google Scholar 

  41. Umayahara K, Numa F, Suehiro Y, Sakata A, Nawata S, Ogata H, Suminami Y, Sakamoto M, Sasaki K, Kato H (2002) Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression. Genes Chromosomes Cancer 33:98–102

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Guangdong Provincial Scientific Research Item (Grant 2004B30301007) and partially supported by Research Fund of State Key Laboratory of Oncology in Southern China.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, LM., Zheng, M., Huang, L. et al. Molecular characterization of early adenocarcinoma of the uterine cervix by oligonucleotide microarray. Arch Gynecol Obstet 283, 861–869 (2011). https://doi.org/10.1007/s00404-010-1511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-010-1511-4

Keywords

Navigation