Skip to main content

Advertisement

Log in

Hsa_circ_0008234 facilitates proliferation of cutaneous squamous cell carcinoma through targeting miR-127-5p to regulate ADCY7

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignant tumor with 25–50% of 5-year survival. There exist urgent needs for the identification of novel biomarkers for the diagnostic and therapeutic strategies of cSCC. The differentially expressed circRNAs in cSCC tissues and non-lesional skin tissues were obtained through analyzing the circular RNAs (circRNAs) microarray dataset GSE74758. The expression pattern of the indicated circRNAs in cSCC tissues was confirmed by qRT-PCR. FISH analysis was used to detect the location of hsa_circ_0008234 in cells. RIP experiment was used to detect the interaction between hsa_circ_0008234 and miR-127-5p. CCK-8 analysis and colony formation assay were used to detect the proliferation of cSCC cells. qRT-PCR and western blot were adopted to detect the expression of ACDY7. Three differential expressed circRNAs were obtained from the microarray data (GSE74758), and hsa_circ_0008234 was confirmed to be highly expressed in cSCC tissues by qRT-PCR. Hsa_circ_0008234 was mainly located in cytoplasm and stable in cSCC cells. RIP experiment revealed that hsa_circ_0008234 directly interacts with miR-127-5p in cSCC cells. Hsa_circ_0008234 increased the cell viability and colony formation of cSCC cells through acting as the sponge of miR-127-5p. MiR-127-5p inhibited the expression of ADCY7 in cSCC cells through binding the 3’UTR of ADCY7. Hsa_circ_0008234 was positively associated with ADCY7 expression in cSCC tissues. Hsa_circ_0008234 facilitates the proliferation of cSCC through targeting miR-127-5p to regulate ADCY7 expression and has the potential to be a novel therapeutic target for cSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keyal U, Bhatta AK, Zhang G, Wang XL (2019) Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma. J Am Acad Dermatol 80(3):765–773. https://doi.org/10.1016/j.jaad.2018.10.042

    Article  PubMed  Google Scholar 

  2. An X, Liu X, Ma G, Li C (2019) Upregulated circular RNA circ_0070934 facilitates cutaneous squamous cell carcinoma cell growth and invasion by sponging miR-1238 and miR-1247-5p. Biochem Biophys Res Commun 513(2):380–385. https://doi.org/10.1016/j.bbrc.2019.04.017

    Article  CAS  PubMed  Google Scholar 

  3. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  4. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  5. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, Dai J, Zhang S, Yang Q, Yi Y, Jiang Y (2019) Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Mol Cancer 18(1):13. https://doi.org/10.1186/s12943-019-0943-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meng J, Chen S, Han JX, Qian B, Wang XR, Zhong WL, Qin Y, Zhang H, Gao WF, Lei YY, Yang W, Yang L, Zhang C, Liu HJ, Liu YR, Zhou HG, Sun T, Yang C (2018) Twist1 regulates vimentin through Cul2 Circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res 78:4150–4162. https://doi.org/10.1158/0008-5472.CAN-17-3009

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D, Yang L, Wang J, Tang H, Xie X (2018) circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics 8:4003–4015. https://doi.org/10.7150/thno.24106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J, Liu CJ, Jing J, Cao J, Zhou B, Wang L, Zhou Y, Lin C, Guo AY, Chen X, Diao L, Li W, Chen Z, He X, Mills GB, Blackburn MR, Han L (2019) Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med 11:55. https://doi.org/10.1186/s13073-019-0663-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He J, Xie Q, Xu H, Li J, Li Y (2017) Circular RNAs and cancer. Cancer Lett 396:138–144. https://doi.org/10.1016/j.canlet.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  11. Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, Liu F, Gu L, Lian Y, Li J, Wu Y, Zhang X, Shan B (2018) Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett 426:37–46. https://doi.org/10.1016/j.canlet.2018.03.049

    Article  CAS  PubMed  Google Scholar 

  12. Fang L, Du WW, Awan FM, Dong J, Yang BB (2019) The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett 459:216–226. https://doi.org/10.1016/j.canlet.2019.05.036

    Article  CAS  PubMed  Google Scholar 

  13. Barbagallo D, Caponnetto A, Brex D, Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi G, Caltabiano R, Barbagallo GM, Spina-Purrello V, Ragusa M, Di Pietro C, Hansen TB, Purrello M (2019). Cancers (Basel). https://doi.org/10.3390/cancers11020194

    Article  PubMed Central  Google Scholar 

  14. Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D’Angeli F, Morrone A, Caltabiano R, Barbagallo GM, Ragusa M, Di Pietro C, Hansen TB, Purrello M (2018). Int J Mol Sci. https://doi.org/10.3390/ijms19020480

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of CircRNAs. Mol Cell 66(1):9-21.e7. https://doi.org/10.1016/j.molcel.2017.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng L, Liu S, Liu F, Sang M, Ju Y, Fan X, Gu L, Li Z, Geng C, Sang M (2020) ZEB1-mediated transcriptional upregulation of circWWC3 promotes breast cancer progression through activating ras signaling pathway. Mol Ther Nucleic Acids 22:124–137. https://doi.org/10.1016/j.omtn.2020.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, Xu L, Jiang F, Dong G (2019) Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci 110:2960–2972. https://doi.org/10.1111/cas.14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang F, Fan M, Cai Y, Zhou X, Tai S, Yu Y, Wu H, Zhang Y, Liu J, Huang S, He N, Hu Z, Jin X (2020) Circular RNA circRIMS1 acts as a Sponge of miR-433-3p to promote bladder cancer progression by regulating CCAR1 expression. Mol Ther Nucleic Acids 22:815–831. https://doi.org/10.1016/j.omtn.2020.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, Stockfleth E, Hessam S (2016) Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 83(3):210–218. https://doi.org/10.1016/j.jdermsci.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  20. Das Mahapatra K, Pasquali L, Søndergaard JN, Lapins J, Nemeth IB, Baltás E, Kemény L, Homey B, Moldovan LI, Kjems J, Kutter C, Sonkoly E, Kristensen LS, Pivarcsi A (2020) A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep 10(1):3637. https://doi.org/10.1038/s41598-020-59660-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang DW, Wu HY, Zhu CR, Wu DD (2020) CircRNA hsa_circ_0070934 functions as a competitive endogenous RNA to regulate HOXB7 expression by sponging miR-1236-3p in cutaneous squamous cell carcinoma. Int J Oncol 57(2):478–487. https://doi.org/10.3892/ijo.2020.5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen S, Ding J, Wang Y, Lu T, Wang L, Gao X, Chen H, Qu L, He C (2020) RNA-seq profiling of circular RNAs and the oncogenic role of circPVT1 in cutaneous squamous cell carcinoma. Onco Targets Ther 13:6777–6788. https://doi.org/10.2147/OTT.S252233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao L, Jin HJ, Zhang D, Lin Q (2020) Silencing circRNA_001937 may inhibit cutaneous squamous cell carcinoma proliferation and induce apoptosis by preventing the sponging of the miRNA-597-3p/FOSL2 pathway. Int J Mol Med 46(5):1653–1660. https://doi.org/10.3892/ijmm.2020.4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kristensen LS, Andersen MS, Stagsted LVW et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  25. Patop IL, Wüst S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J. https://doi.org/10.15252/embj.2018100836

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bach DH, Lee SK, Sood AK (2019) Circular RNAs in Cancer. Mol Ther Nucleic Acids 16:118–129. https://doi.org/10.1016/j.omtn.2019.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du J, Zhang G, Qiu H, Yu H, Yuan W (2019) The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett 24:72. https://doi.org/10.1186/s11658-019-0198-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai S, Wu Y, Yan Y, Shao S, Zhang J, Liu J, Hui B, Liu R, Ma H, Zhang X, Ren J (2020) Construct a circRNA/miRNA/mRNA regulatory network to explore potential pathogenesis and therapy options of clear cell renal cell carcinoma. Sci Rep 10:13659. https://doi.org/10.1038/s41598-020-70484-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Xu Y, Xiao F, Zhang J, Wang Y, Yao Y, Yang J (2020) Comprehensive analysis of a circRNA-miRNA-mRNA network to reveal potential inflammation-related targets for gastric adenocarcinoma. Mediators Inflamm 2020:9435608. https://doi.org/10.1155/2020/9435608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiong G, Diao D, Lu D, Liu X, Liu Z, Mai S, Feng S, Dong X, Cai K (2020) Circular RNA circNELL2 acts as the sponge of miR-127-5p to promote esophageal squamous cell carcinoma progression. Onco Targets Ther 13:9245–9255. https://doi.org/10.2147/OTT.S247847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huan L, Bao C, Chen D, Li Y, Lian J, Ding J, Huang S, Liang L, He X (2016) MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-kappaB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci 107(3):258–266. https://doi.org/10.1111/cas.12869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Financial Supporting Program of Hebei Province (No.19277768D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganxun Wu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical statement

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 4328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wang, Y., Wu, J. et al. Hsa_circ_0008234 facilitates proliferation of cutaneous squamous cell carcinoma through targeting miR-127-5p to regulate ADCY7. Arch Dermatol Res 314, 541–551 (2022). https://doi.org/10.1007/s00403-021-02261-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02261-8

Keywords

Navigation