Skip to main content

Advertisement

Log in

Substrate softness promotes terminal differentiation of human keratinocytes without altering their ability to proliferate back into a rigid environment

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Substrate stiffness is a key regulator of cell behavior. To investigate how mechanical properties of cell microenvironment affect the human keratinocyte, primary cells were seeded on polyacrylamide hydrogels of different compliances (soft: 4 kPa, medium: 14 kPa, rigid: 45 kPa) in comparison with glass coverslip (> GPa). Keratinocyte spreading and proliferation were strongly decreased on the softest hydrogel, while no significant difference was observed between medium, rigid hydrogels and glass coverslip, and cells’ viability was comparable in all conditions after 72 h. We then performed a RNA-seq to compare the transcriptomes from keratinocytes cultured for 72 h on the softest hydrogel or on coverslips. The cells on the soft hydrogel showed a strong increase in the expression of late differentiation marker genes from the epidermal differentiation complex (1q21) and the antioxidant machinery. In parallel, these cells displayed a significant loss of expression of the matrix receptors (integrin α6 and β1) and the EGF receptor. However, when these cells were replated on a plastic culture plate (> GPa), they were able to re-engage the proliferation machinery with a strong colony-formation efficiency. Overall, using low-calcium differentiation monolayers at confluence, the lesser the rigidity, the stronger the markers of late differentiation are expressed, while the inverse is observed regarding the markers of early differentiation. In conclusion, below a certain rigidity, human keratinocytes undergo genome reprogramming indicating terminal differentiation that can switch back to proliferation in contact with a stiffer environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abhishek S, Palamadai Krishnan S (2016) Epidermal differentiation complex: a review on its epigenetic regulation and potential drug targets. Cell J 18:1–6

    PubMed  PubMed Central  Google Scholar 

  2. Adams JC, Watt FM (1989) Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 340:307–309. https://doi.org/10.1038/340307a0

    Article  CAS  PubMed  Google Scholar 

  3. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217. https://doi.org/10.1038/nrm2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen S, Shi J, Xu X, Ding J, Zhong W, Zhang L, Xing M, Zhang L (2016) Study of stiffness effects of poly(amidoamine)-poly(n-isopropyl acrylamide) hydrogel on wound healing. Coll Surf B Biointerfaces 140:574–582. https://doi.org/10.1016/j.colsurfb.2015.08.041

    Article  CAS  Google Scholar 

  5. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform 10:48. https://doi.org/10.1186/1471-2105-10-48

    Article  Google Scholar 

  6. Edwards C, Marks R (1995) Evaluation of biomechanical properties of human skin. Clin Dermatol 13:375–380

    Article  CAS  PubMed  Google Scholar 

  7. El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J (2002) Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 11:398–405

    Article  CAS  PubMed  Google Scholar 

  8. Evans ND, Oreffo RO, Healy E, Thurner PJ, Man YH (2013) Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 28:397–409. https://doi.org/10.1016/j.jmbbm.2013.04.023

    Article  PubMed  Google Scholar 

  9. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159:1009–1020. https://doi.org/10.1016/S0002-9440(10)61776-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC (2018) Mechanical forces in skin disorders. J Dermatol Sci 90:232–240. https://doi.org/10.1016/j.jdermsci.2018.03.004

    Article  PubMed  Google Scholar 

  11. Jor JW, Parker MD, Taberner AJ, Nash MP, Nielsen PM (2013) Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip Rev Syst Biol Med 5:539–556. https://doi.org/10.1002/wsbm.1228

    Article  PubMed  Google Scholar 

  12. Kenny FN, Connelly JT (2015) Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res 360:571–582. https://doi.org/10.1007/s00441-014-2064-9

    Article  CAS  PubMed  Google Scholar 

  13. Kenny FN, Drymoussi Z, Delaine-Smith R, Kao AP, Laly AC, Knight MM, Philpott MP, Connelly JT (2018) Tissue stiffening promotes keratinocyte proliferation through activation of epidermal growth factor signaling. J Cell Sci 131:jcs215780. https://doi.org/10.1242/jcs.215780

    Article  CAS  PubMed  Google Scholar 

  14. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41:e108. https://doi.org/10.1093/nar/gkt214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liem RK (2016) Cytoskeletal Integrators: the spectrin superfamily. Cold Spring Harb Perspect Biol 8:a018259. https://doi.org/10.1101/cshperspect.a018259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mainzer C, Remoue N, Molinari J, Rousselle P, Barricchello C, Lago JC, Sommer P, Sigaudo-Roussel D, Debret R (2018) In vitro epidermis model mimicking IGF-1-specific age-related decline. Exp Dermatol 27:537–543. https://doi.org/10.1111/exd.13547

    Article  CAS  PubMed  Google Scholar 

  18. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poumay Y, Pittelkow MR (1995) Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol 104:271–276

    Article  CAS  PubMed  Google Scholar 

  20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  22. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WT (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649. https://doi.org/10.1038/nmat3339

    Article  CAS  PubMed  Google Scholar 

  23. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868. https://doi.org/10.2353/ajpath.2006.051302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waldera Lupa DM, Kalfalah F, Safferling K, Boukamp P, Poschmann G, Volpi E, Gotz-Rosch C, Bernerd F, Haag L, Huebenthal U, Fritsche E, Boege F, Grabe N, Tigges J, Stuhler K, Krutmann J (2015) Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J Invest Dermatol 135:1954–1968. https://doi.org/10.1038/jid.2015.120

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Wang G, Luo X, Qiu J, Tang C (2012) Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns 38:414–420. https://doi.org/10.1016/j.burns.2011.09.002

    Article  PubMed  Google Scholar 

  26. Watt FM, Kubler MD, Hotchin NA, Nicholson LJ, Adams JC (1993) Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. J Cell Sci 106(Pt 1):175–182

    CAS  PubMed  Google Scholar 

  27. Wong VW, Akaishi S, Longaker MT, Gurtner GC (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131:2186–2196. https://doi.org/10.1038/jid.2011.212

    Article  CAS  PubMed  Google Scholar 

  28. Wu XT, Sun LW, Yang X, Ding D, Han D, Fan YB (2017) The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes. Sci Rep 7:40940. https://doi.org/10.1038/srep40940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. You H, Padmashali RM, Ranganathan A, Lei P, Girnius N, Davis RJ, Andreadis ST (2013) JNK regulates compliance-induced adherens junctions formation in epithelial cells and tissues. J Cell Sci 126:2718–2729. https://doi.org/10.1242/jcs.122903

    Article  CAS  PubMed  Google Scholar 

  30. Zahouani H, Pailler-Mattei C, Sohm B, Vargiolu R, Cenizo V, Debret R (2009) Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res Technol 15:68–76. https://doi.org/10.1111/j.1600-0846.2008.00329.x

    Article  CAS  PubMed  Google Scholar 

  31. Zhao KN, Masci PP, Lavin MF (2011) Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCdelta activation is associated with phosphorylated adducin. PLoS One 6:e28267. https://doi.org/10.1371/journal.pone.0028267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Isispharma France. Choua Ya is a recipient of a PhD grant from the French National Association of Research and Technology (ANRT). Mariana Carrancá is supported by a PhD grant from the Région Auvergne Rhône Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Debret.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bérengère Fromy and Romain Debret are co-last authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ya, C., Carrancá, M., Sigaudo-Roussel, D. et al. Substrate softness promotes terminal differentiation of human keratinocytes without altering their ability to proliferate back into a rigid environment. Arch Dermatol Res 311, 741–751 (2019). https://doi.org/10.1007/s00403-019-01962-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-01962-5

Keywords

Navigation