Skip to main content

Advertisement

Log in

Attenuation of serotonin-induced itch by sumatriptan: possible involvement of endogenous opioids

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Serotonin (5-hydroxytryptamine or 5-HT) is a neurotransmitter in itch and impaired serotonin signaling has been linked to a variety of itch conditions. Intradermal injection of 5-HT induces scratching behavior in mice through stimulation of 5-HT receptors. Previous studies have demonstrated that selective 5-HT1B/1D receptors agonists, including sumatriptan, inhibits neurotransmission. We have also reported that sumatriptan suppresses chloroquine-induced itch. Therefore, we investigated if sumatriptan has inhibitory effects on serotonin-induced itch in mice. Here, we show that intradermal and intraperitoneal administration of sumatriptan significantly reduce 5-HT-induced scratching behavior in mice. While intradermal injection of GR-127935, a selective 5-HT1B/1D receptors antagonist, reverses the anti-pruritic effects of sumatriptan. In addition, we show that intradermal and intraperitoneal naltrexone (NTX), a non-specific opioid receptor antagonist, and methylnaltrexone (MNTX), a peripherally acting opioid receptor antagonist, significantly decrease the 5-HT-induced scratching behavior. Additionally, combined treatment with sub-effective doses of sumatriptan and an opioid receptor antagonist, naltrexone, decreases 5-HT-evoked scratching responses. We conclude that sumatriptan inhibits 5-HT-induced itch by activating the peripheral 5-HT1B/1D receptors. Moreover, peripheral opioid receptors have a role in serotonin-induced itch, and anti-pruritic effects of sumatriptan seem to involve the opioid system. These data suggest that 5-HT1B/1D receptors agonists maybe useful to treat a variety of pathologic itch conditions with impaired serotonergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M (2016) Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 136:154–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Arvieu L, Mauborgne A, Bourgoin S, Oliver C, Feltz P, Hamon M, Cesselin F (1996) Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord. Neuroreport 7:1973–1976

    Article  CAS  PubMed  Google Scholar 

  3. Bautista DM, Wilson SR, Hoon MA (2014) Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 17:175–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bigliardi PL, Bigliardi-Qi M (2014) Peripheral opioids. In: Carstens E, Akiyama T Itch: Mechanisms and treatment, p 18. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  5. Bigliardi PL, Stammer H, Jost G, Rufli T, Büchner S, Bigliardi-Qi M (2007) Treatment of pruritus with topically applied opiate receptor antagonist. J Am Acad Dermatol 56:979–988

    Article  PubMed  Google Scholar 

  6. Bingham S, Davey PT, Sammons M, Raval P, Overend P, Parsons AA (2001) Inhibition of inflammation-induced thermal hypersensitivity by sumatriptan through activation of 5-HT 1B/1D receptors. Exp Neurol 167:65–73

    Article  CAS  PubMed  Google Scholar 

  7. Breton L, Nonotte I, De LO (1998) Use of a serotonin antagonist and/or agonist, respectively, specific of the 5ht2 and 5ht1d receptor in a cosmetic or dermatological composition for sensitive skin and resulting composition. Google Patents WO 1998031335 A3

  8. Classey J, Bartsch T, Goadsby P (2010) Distribution of 5-HT 1B, 5-HT 1D and 5-HT 1F receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans. Brain Res 1361:76–85

    Article  CAS  PubMed  Google Scholar 

  9. Dalessio DJ (1979) Classification and mechanism of migraine. Headache 19:114–121

    Article  CAS  PubMed  Google Scholar 

  10. Derry CJ, Derry S, Moore RA (2014) Sumatriptan (all routes of administration) for acute migraine attacks in adults-overview of Cochrane reviews. Cochrane Database Syst Rev 5:CD009108

  11. Döring K, Best C, Birklein F, Krämer H (2015) Zolmitriptan inhibits neurogenic inflammation and pain during electrical stimulation in human skin. Eur J Pain 19:966–972

    Article  PubMed  Google Scholar 

  12. Eross E, Dodick D, Eross M (2007) The sinus, allergy and migraine study (SAMS). Headache 47:213–224

    Article  PubMed  Google Scholar 

  13. Evans MS, Cheng X, Jeffry JA, Disney KE, Premkumar LS (2012) Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache 52:773–784

    Article  PubMed Central  PubMed  Google Scholar 

  14. Finley M, Happel C, Kaminsky D, Rogers T (2008) Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol 252:146–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Foroutan A, Haddadi NS, Ostadhadi S, Sistany N, Dehpour AR (2015) Chloroquine-induced scratching is mediated by NO/cGMP pathway in mice. Pharmacol Biochem Behav 134:79–84

    Article  CAS  PubMed  Google Scholar 

  16. Georgala S, Schulpis KH, Papaconstantinou E, Stratigos J (1994) Raised β-endorphin serum levels in children with atopic dermatitis and pruritus. J Dermatol Sci 8:125–128

    Article  CAS  PubMed  Google Scholar 

  17. Granados-Soto V, Argüelles C, Rocha-Gonzalez HI, Godinez-Chaparro B, Flores-Murrieta FJ, Villalón C (2010) The role of peripheral 5-HT 1A, 5-HT 1B, 5-HT 1D, 5-HT 1E and 5-HT 1F serotonergic receptors in the reduction of nociception in rats. Neuroscience 165:561–568

    Article  CAS  PubMed  Google Scholar 

  18. Haddadi A-S, Foroutan A, Ostadhadi S, Azimi E, Rahimi N, Nateghpour M, Lerner EA, Dehpour AR (2017) Peripheral NMDA receptor/NO system blockage inhibits itch responses induced by chloroquine in mice. Acta Derm Venereol 97:571–577

    Article  PubMed Central  PubMed  Google Scholar 

  19. Haddadi NS, Ostadhadi S, Shakiba S, Afshari K, Rahimi N, Foroutan A, Dehpour AR (2017) Pharmacological evidence of involvement of nitric oxide pathway in anti-pruritic effects of sumatriptan in chloroquine-induced scratching in mice. Fundam Clin Pharmacol. https://doi.org/10.1111/fcp.12317

    PubMed  Google Scholar 

  20. Han L, Dong X (2014) Itch mechanisms and circuits. Annu Rev Biophys 43:331–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    Article  CAS  PubMed  Google Scholar 

  22. Hoeck EA, Marker JB, Gazerani P, Andersen H, Arendt-Nielsen H L (2016) Preclinical and human surrogate models of itch. Exp Dermatol 25:750–757

    Article  CAS  PubMed  Google Scholar 

  23. Hosogi M, Schmelz M, Miyachi Y, Ikoma A (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126:16–23

    Article  CAS  PubMed  Google Scholar 

  24. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey P (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  25. Huang Y-H, Brodda-Jansen G, Lundeberg T, Yu L-C (2000) Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone. Brain Res 873:54–59

    Article  CAS  PubMed  Google Scholar 

  26. Johnston MM, Rapoport AM (2010) Triptans for the management of migraine. Drugs 70:1505–1518

    Article  CAS  PubMed  Google Scholar 

  27. Ku M, Silverman B, Prifti N, Ying W, Persaud Y, Schneider A (2006) Prevalence of migraine headaches in patients with allergic rhinitis. Ann Allergy Asthma Immunol 97:226–230

    Article  PubMed  Google Scholar 

  28. Kushnir-Sukhov NM, Brown JM, Wu Y, Kirshenbaum A, Metcalfe DD (2007) Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol 119:498–499

    Article  CAS  PubMed  Google Scholar 

  29. Kuzmin A, Kreek MJ, Bakalkin G, Liljequist S (2007) The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology 32:902–910

    Article  CAS  PubMed  Google Scholar 

  30. Law S, Derry S, Moore RA. (2010) Triptans for acute cluster headache. Cochrane Database Syst Rev. 4:CD008042

  31. Liu X-Y, Liu Z-C, Sun Y-G, Ross M, Kim S, Tsai F-F, Li Q-F, Jeffry J, Kim J-Y, Loh HH (2011) Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147:447–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Loyd DR, Henry MA, Hargreaves KM Serotonergic neuromodulation of peripheral nociceptors. In: Seminars in cell & developmental biology, 2013. Vol 1. Elsevier, pp 51–57

  33. Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen ASB, Wong JF, Stucky CL (2015) HTR7 mediates serotonergic acute and chronic itch. Neuron 87:124–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mortimer M, Kay J, Gawkrodger D, Jaron A, Barker D (1993) The prevalence of headache and migraine in atopic children: an epidemiological study in general practice. Headache 33:427–431

    Article  CAS  PubMed  Google Scholar 

  35. Nikoui V, Javadi-Paydar M, Salehi M, Behestani S, Dehpour AR (2016) Protective effects of lithium on sumatriptan-induced memory impairment in mice. Acta Med Iran 54:226–232

    PubMed  Google Scholar 

  36. Nojima H, Carstens E (2003) 5-Hydroxytryptamine (5-HT) 2 receptor involvement in acute 5-HT-evoked scratching but not in allergic pruritus induced by dinitrofluorobenzene in rats. J Pharmacol Exp Ther 306:245–252

    Article  CAS  PubMed  Google Scholar 

  37. Olfert ED, Cross BM, McWilliam AA (1993) Guide to the care and use of experimental animals, vol 1, 2nd edn. Canadian Council on Animal Care Ottawa, Ontario, Canada

  38. Ostadhadi S, Foroutan A, Haddadi N-S, Norouzi-Javidan A, Momeny M, Zarrinrad G, Ghaffari SH, Dehpour A-R (2017) Pharmacological evidence for the involvement of adenosine triphosphate sensitive potassium channels in chloroquine-induced itch in mice. Pharmacol Rep 69:1295–1299

    Article  CAS  PubMed  Google Scholar 

  39. Ostadhadi S, Haddadi NS, Foroutan A, Azimi E, Elmariah S, Dehpour AR (2017) Development of resistance to serotonin-induced itch in bile duct ligated mice. Clin Exp Pharmacol Physiol 44:680–685

    Article  CAS  PubMed  Google Scholar 

  40. Ostadhadi S, Kordjazy N, Haj-Mirzaian A, Mansouri P, Dehpour AR (2015) 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice. Fundam Clin Pharmacol 29:310–315

    Article  CAS  PubMed  Google Scholar 

  41. Özge A, Uluduz D, Bolay H (2017) Co-occurrence of migraine and atopy in children and adolescents: myth or a casual relationship? Curr Opin Neurol 30:287–291

    Article  PubMed  Google Scholar 

  42. Peroutka SJ, Havlik S, Oksenberg D (1993) Anti-migraine drug interactions with cloned human 5-hydroxytryptamine 1, receptor subtypes. Headache J Head Face Pain 33:347–350

    Article  CAS  Google Scholar 

  43. Pierce M, O’neill C, Felker E, Sebree T (2013) Sumatriptan iontophoretic transdermal system: history, study results, and use in clinical practice. Headache J Head Face Pain 53:34–42

    Article  Google Scholar 

  44. Schoffelmeer A, Warden G, Hogenboom F, Mulder AH (1991) Beta-endorphin: a highly selective endogenous opioid agonist for presynaptic mu opioid receptors. J Pharmacol Exp Ther 258:237–242

    CAS  PubMed  Google Scholar 

  45. Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003) Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196:144–153

    Article  CAS  PubMed  Google Scholar 

  46. Ständer S, Gunzer M, Metze D, Luger T, Steinhoff M (2002) Localization of µ-opioid receptor 1A on sensory nerve fibers in human skin. Regul Pept 110:75–83

    Article  PubMed  Google Scholar 

  47. Sun S, Dong X Trp channels and itch. In: Semin Immunopathol, 2016. vol 3. Springer, pp 293–307

  48. Tian B, Wang X-L, Huang Y, Chen L-H, Cheng R-X, Zhou F-M, Guo R, Li J-C, Liu T (2016) Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats. Sci Rep 6:36286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Turetta L, Donella-Deana A, Folda A, Bulato C, Deana R (2004) Characterisation of the serotonin efflux induced by cytosolic Ca2+ and Na+ concentration increase in human platelets. Cell Physiol Biochem 14(4–6):377–386

    CAS  PubMed  Google Scholar 

  50. Twycross R, Greaves M, Handwerker H, Jones E, Libretto S, Szepietowski J, Zylicz Z (2003) Itch: scratching more than the surface. Qjm 96:7–26

    Article  CAS  PubMed  Google Scholar 

  51. Waeber C, Moskowitz MA (1995) Autoradiographic visualisation of [3H] 5-carboxamidotryptamine binding sites in the guinea pig and rat brain. Eur J Pharmacol 283:31–46

    Article  CAS  PubMed  Google Scholar 

  52. Weisshaar E, Ziethen B, Gollnick H (1997) Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm Res 46:412–416

    Article  CAS  PubMed  Google Scholar 

  53. Woodward DF, Nieves AL (1996) Use of 5-HT ligands as anti-pruritic agents. United States Patent 5521183

  54. Yamaguchi T, Nagasawa T, Satoh M, Kuraishi Y (1999) Itch-associated response induced by intradermal serotonin through 5-HT 2 receptors in mice. Neurosci Res 35:77–83

    Article  CAS  PubMed  Google Scholar 

  55. Yu X-J, Cutrer F, Moskowitz M, Waeber C (1997) The 5-HT 1D receptor antagonist GR-127,935 prevents inhibitory effects of sumatriptan but not CP-122,288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology 36:83–91

    Article  CAS  PubMed  Google Scholar 

  56. Yuan C-S, Foss JF, O’Connor M, Osinski J, Roizen MF, Moss J (1998) Efficacy of orally administered methylnaltrexone in decreasing subjective effects after intravenous morphine. Drug Alcohol Depend 52:161–165

    Article  CAS  PubMed  Google Scholar 

  57. Zochodne DW, Ho LT (1994) Sumatriptan blocks neurogenic inflammation in the peripheral nerve trunk. Neurology 44:161–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran (95-02-30-32135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad-Reza Dehpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Experiments were performed according the European Communities Council Directive of 24 November 1986 (86/609/EEC) and Guide to the Care and Use of Experimental Animals [37] with approval of committee for animal ethics and experiments at Tehran University of Medical Sciences, Tehran, Iran. In addition, this article does not contain any studies with human participants performed by any of the authors.

Additional information

Deceased: Sattar Ostadhadi in 10/2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddadi, NS., Foroutan, A., Shakiba, S. et al. Attenuation of serotonin-induced itch by sumatriptan: possible involvement of endogenous opioids. Arch Dermatol Res 310, 165–172 (2018). https://doi.org/10.1007/s00403-018-1809-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1809-9

Keywords

Navigation