Skip to main content

Advertisement

Log in

Vorinostat and Mithramycin A in combination therapy as an interesting strategy for the treatment of Sézary T lymphoma: a transcriptomic approach

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

SAHA (vorinostat) is a histone deacetylase inhibitor approved by the USA Food and Drug Administration (FDA) for treating advanced refractory cutaneous T cell lymphomas. As SAHA alters the expression of many genes under control of the Sp1 transcription factor, we examined the effect of its association with the FDA-approved anticancer antibiotic Mithramycin A (MTR, plicamycin), a competitive inhibitor of Sp1 binding to DNA. Sézary syndrome (SS) cells, expanded ex vivo from peripheral blood mononuclear cells of 4 patients, were tested for their sensitivity to the drugs regarding cytotoxicity and differential responsive gene expression. Multivariate statistical methods were used to identify genes whose expression is altered by SAHA, MTR, and the synergist effect of the two drugs. MTR, like SAHA, induced the apoptosis of SS cells, while the two drugs in combination showed clear synergy or potentiation. Expression data stressed a likely important role of additive or synergistic epigenetic modifications in the combined effect of the two drugs, while direct inhibition of Sp1-dependent transcription seemed to have only limited impact. Ontological analysis of modified gene expression suggested that the two drugs, either independently or synergistically, counteracted many intertwined pro-survival pathways deregulated in SS cells, resistance of these tumors to intrinsic and extrinsic apoptosis, abnormal adhesion migration, and invasive properties, as well as immunosuppressive behavior. Our findings provide preliminary clues on the individual and combined effects of SAHA and MTR in SS cells and highlight a potential therapeutic interest of this novel pair of drugs for treatment of SS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SAHA:

Suberoylanilide hydroxamic acid

MTR:

Mithramycin A

CI:

Combination index

CTCL:

Cutaneous T cell lymphomas

FC:

Fold change

FDR:

False discovery rate

GO:

Gene ontology

Sp1:

Specificity protein 1

SS:

Sézary syndrome

References

  1. Barba G, Matteucci C, Girolomoni G et al (2008) Comparative genomic hybridization identifies 17q11.2 approximately q12 duplication as an early event in cutaneous T-cell lymphomas. Cancer Genet Cytogenet 184:48–51. doi:10.1016/j.cancergencyto.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  2. Bellei B, Pacchiarotti A, Perez M, Faraggiana T (2004) Frequent beta-catenin overexpression without exon 3 mutation in cutaneous lymphomas. Mod Pathol 17(10):1275–1281

    Article  CAS  PubMed  Google Scholar 

  3. Blume SW, Snyder RC, Ray R et al (1991) Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Investig 88:1613–1621. doi:10.1172/JCI115474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell JJ, Clark RA, Watanabe R, Kupper TS (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116:767–771. doi:10.1182/blood-2009-11-251926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campo E, Swerdlow SH, Harris NL et al (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117:5019–5032. doi:10.1182/blood-2011-01-293050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capriotti E, Vonderheid EC, Thoburn CJ et al (2007) Chemokine receptor expression by leukemic T cells of cutaneous T-cell lymphoma: clinical and histopathological correlations. J Investig Dermatol 127:2882–2892. doi:10.1038/sj.jid.5700916

    Article  CAS  PubMed  Google Scholar 

  7. Chou T-C (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. doi:10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  8. Contassot E, Kerl K, Roques S et al (2008) Resistance to FasL and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in Sezary syndrome T-cells associated with impaired death receptor and FLICE-inhibitory protein expression. Blood 111:4780–4787. doi:10.1182/blood-2007-08-109074

    Article  CAS  PubMed  Google Scholar 

  9. Costello R, Sanchez C, Le Treut T et al (2010) Peripheral T-cell lymphoma gene expression profiling and potential therapeutic exploitations. Br J Haematol 150:21–27. doi:10.1111/j.1365-2141.2009.07977.x

    Article  CAS  PubMed  Google Scholar 

  10. Dalloul A, Laroche L, Bagot M et al (1992) Interleukin-7 is a growth factor for Sézary lymphoma cells. J Clin Investig 90:1054–1060. doi:10.1172/JCI115920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Didier G, Brézellec P, Remy E, Hénaut A (2002) GeneANOVA—gene expression analysis of variance. Bioinform Oxf Engl 18:490–491

    Article  CAS  Google Scholar 

  12. Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs 16:1111–1120. doi:10.1517/13543784.16.7.1111

    Article  CAS  PubMed  Google Scholar 

  13. Gardner JM, Introcaso CE, Nasta SD et al (2009) A novel regimen of vorinostat with interferon gamma for refractory Sézary syndrome. J Am Acad Dermatol 61:112–116. doi:10.1016/j.jaad.2008.11.889

    Article  PubMed  Google Scholar 

  14. Gotea V, Ovcharenko I (2008) DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res 36:W133–W139. doi:10.1093/nar/gkn300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. doi:10.1093/nar/gkn923

    Article  Google Scholar 

  16. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  17. Huang L, Sowa Y, Sakai T, Pardee AB (2000) Activation of the p21WAF1/CIP1 promoter independent of p53 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through the Sp1 sites. Oncogene 19:5712–5719. doi:10.1038/sj.onc.1203963

    Article  CAS  PubMed  Google Scholar 

  18. Iraci N, Diolaiti D, Papa A et al (2011) A SP1/MIZ1/MYCN repression complex recruits HDAC1 at the TRKA and p75NTR promoters and affects neuroblastoma malignancy by inhibiting the cell response to NGF. Cancer Res 71:404–412. doi:10.1158/0008-5472.CAN-10-2627

    Article  CAS  PubMed  Google Scholar 

  19. Kari L, Loboda A, Nebozhyn M et al (2003) Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med 197:1477–1488. doi:10.1084/jem.20021726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krejsgaard T, Odum N, Geisler C et al (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia 26:424–432. doi:10.1038/leu.2011.237

    Article  CAS  PubMed  Google Scholar 

  21. Kim EJ, Hess S, Richardson SK et al (2005) Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Investig 115:798–812. doi:10.1172/JCI24826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim S-N, Kim NH, Lee W et al (2009) Histone deacetylase inhibitor induction of P-glycoprotein transcription requires both histone deacetylase 1 dissociation and recruitment of CAAT/enhancer binding protein beta and pCAF to the promoter region. Mol Cancer Res 7:735–744. doi:10.1158/1541-7786.MCR-08-0296

    Article  CAS  PubMed  Google Scholar 

  23. Lee CS, Ungewickell A, Bhaduri A et al (2012) Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood 120:3288–3297. doi:10.1182/blood-2012-04-423061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  25. Mir MA, Majee S, Das S, Dasgupta D (2003) Association of chromatin with anticancer antibiotics, mithramycin and chromomycin A3. Bioorg Med Chem 11:2791–2801

    Article  CAS  PubMed  Google Scholar 

  26. Nakayama A, Odajima T, Murakami H et al (2001) Characterization of two promoters that regulate alternative transcripts in the microtubule-associated protein (MAP) 1A gene. Biochim Biophys Acta 1518:260–266

    Article  CAS  PubMed  Google Scholar 

  27. Narducci MG, Scala E, Bresin A et al (2006) Skin homing of Sézary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 107:1108–1115. doi:10.1182/blood-2005-04-1492

    Article  CAS  PubMed  Google Scholar 

  28. Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. doi:10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rivero S, Ruiz-García A, Díaz-Guerra MJM et al (2011) Characterization of a proximal Sp1 response element in the mouse Dlk2 gene promoter. BMC Mol Biol 12:52. doi:10.1186/1471-2199-12-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035. doi:10.1073/pnas.0408345102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tajrishi MM, Shin J, Hetman M, Kumar A (2014) DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy. J Biol Chem 289:19985–19999. doi:10.1074/jbc.M114.568626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wozniak MB, Villuendas R, Bischoff JR et al (2010) Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica 95:613–621. doi:10.3324/haematol.2009.013870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu J, Nihal M, Siddiqui J et al (2009) Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Investig Dermatol 129:1165–1173. doi:10.1038/jid.2008.30931

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Nowak I, Vonderheid EC et al (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 93:9148–9153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) and the French National Research Agency (ANR-08-SYSC-003 CALAMAR). We thank Ms. L. Borg for expert supervision of Marseille Luminy cell culture facilities, Dr. J. Imbert (TAGC), Dr. A. Bergon, and Mr. Nicolas Fernandez (transcriptomic and Genomic Marseille-Luminy TGML/TAGC platform) for their helpful advice for the preparation of the manuscript.

Availability of supporting data

The microarray data included in the paper have been deposited under embargo in GEO to be released upon acceptance of the paper for publication at: (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=glypyyownjmtnmp&acc=GSE64119).

Author information

Authors and Affiliations

Authors

Contributions

BKP and RTC initiated the Sézary project and RTC supervised hospital collaborations. PP supplied characterized PBMC samples from SS patients. BKP conceived the experiments; BKP, BL, JG, and NB (Beaufils) designed the experiments; and BKP, BL, NB (Beaufils), NB (Bonnet), RC, and TLT carried out the experiments. PR designed the statistical analyses of microarray data and RR carried out the bioinformatic analyses. BKP carried out the interpretation of the analyses and drafted the article. PR, RR, VG, and RTC corrected the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Régis T. Costello.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest to declare.

Consent

Patients have signed written informed consent before Sézary cell collection.

Ethical approval

The study was approved by the “Comité de Protection des Personnes” (CPP) Sud-Méditerranée II (ethics committee).

Funding

All the authors have no funding to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragheb, R., Venton, G., Chelbi, R. et al. Vorinostat and Mithramycin A in combination therapy as an interesting strategy for the treatment of Sézary T lymphoma: a transcriptomic approach. Arch Dermatol Res 309, 611–623 (2017). https://doi.org/10.1007/s00403-017-1761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-017-1761-0

Keywords

Navigation