Skip to main content

Advertisement

Log in

Merkel cell polyomavirus and human papilloma virus in proliferative skin lesions arising in patients treated with BRAF inhibitors

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The potential role of oncogenic viruses mediating development of proliferative skin lesions in patients treated with RAF inhibitors is poorly understood. The objective of this study was to investigate human papilloma virus (HPV) and Merkel cell polyomavirus (MCPyV) in skin lesions among patients treated with RAF inhibitors with the help of a case series describing prevalence of HPV, MCPyV, and RAS mutations in skin biopsies obtained from patients receiving RAF inhibitors and developing cutaneous lesions. HPV-DNA was amplified by PCR utilizing multiple nested primer systems designed for detection of a broad range of HPV types. MCPyV copy number determination with real time PCR technology was performed by a “Quantification of MCPyV, small t region” kit. Thirty-six patients were tested (squamous cell carcinoma (SCC) = 14; verruca vulgaris = 15; other = 11). Nine of 12 SCCs (75 %) and eight of 13 verruca vulgaris lesions (62 %) tested positive for MCPyV whereas none of the normal skin biopsies obtained from nine of these patients tested positive for MCPyV (p = 0.0007). HPV incidence in cutaneous SCCs was not different compared to normal skin (50 vs. 56 %, p = 0.86). The association between MCPyV and proliferative skin lesions after RAF inhibitor therapy merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agresti A, Min Y (2001) On small-sample confidence intervals for parameters in discrete distributions. Biometrics 57:963–971

    Article  CAS  PubMed  Google Scholar 

  2. Alam M, Ratner D (2001) Cutaneous squamous-cell carcinoma. N Engl J Med 344:975–983. doi:10.1056/NEJM200103293441306

    Article  CAS  PubMed  Google Scholar 

  3. Aldabagh B, Angeles JG, Cardones AR, Arron ST (2013) Cutaneous squamous cell carcinoma and human papillomavirus: is there an association? Dermatol Surg 39:1–23. doi:10.1111/j.1524-4725.2012.02558.x

    Article  CAS  PubMed  Google Scholar 

  4. Anforth RM, Blumetti TC, Kefford RF, Sharma R, Scolyer RA, Kossard S, Long GV, Fernandez-Peñas P (2012) Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br J Dermatol 167(5):1153–1160

    Article  CAS  PubMed  Google Scholar 

  5. Arnold AW, Hofbauer GF (2012) Human papillomavirus and squamous cell cancer of the skin–epidermodysplasia verruciformis-associated human papillomavirus revisited. Curr Probl Dermatol 43:49–56. doi:10.1159/000335151

    Article  PubMed  Google Scholar 

  6. Asgari MM, Kiviat NB, Critchlow CW, Stern JE, Argenyi ZB, Raugi GJ, Berg D, Odland PB, Hawes SE, de Villiers EM (2008) Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J Investig Dermatol 128:1409–1417. doi:10.1038/sj.jid.5701227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouwes Bavinck JN, Plasmeijer EI, Feltkamp MC (2008) Beta-papillomavirus infection and skin cancer. J Investig Dermatol 128:1355–1358. doi:10.1038/jid.2008.123

    Article  CAS  PubMed  Google Scholar 

  8. de Oliveira WR, He Q, Rady PL, Hughes TK, Neto CF, Rivitti EA, Tyring SK (2004) HPV typing in Brazilian patients with epidermodysplasia verruciformis: high prevalence of EV-HPV 25. J Cutan Med Surg 8:110–115. doi:10.1007/s10227-003-0100-6

    Article  PubMed  Google Scholar 

  9. Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavlovic S (2004) Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104:1094–1099. doi:10.1182/blood-2003-12-4266

    Article  CAS  PubMed  Google Scholar 

  10. Falchook GS, Rady P, Hymes S, Nguyen HP, Tyring SK, Prieto VG, Hong DS, Kurzrock R (2013) Merkel cell polyomavirus and HPV-17 associated with cutaneous squamous cell carcinoma arising in a patient with melanoma treated with the BRAF inhibitor dabrafenib. JAMA Dermatol 149:322–326. doi:10.1001/jamadermatol.2013.2023

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100. doi:10.1126/science.1152586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703. doi:10.1056/NEJMoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819. doi:10.1056/NEJMoa1002011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forslund O, Ly H, Higgins G (2003) Improved detection of cutaneous human papillomavirus DNA by single tube nested ‘hanging droplet’ PCR. J Virol Methods 110:129–136

    Article  CAS  PubMed  Google Scholar 

  15. Fraser CK, Blake SJ, Diener KR, Lyons AB, Brown MP, Hughes TP, Hayball JD (2009) Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp Hematol 37:256–265. doi:10.1016/j.exphem.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  16. Fuessel Haws AL, He Q, Rady PL, Zhang L, Grady J, Hughes TK, Stisser K, Konig R, Tyring SK (2004) Nested PCR with the PGMY09/11 and GP5(+)/6(+) primer sets improves detection of HPV DNA in cervical samples. J Virol Methods 122:87–93. doi:10.1016/j.jviromet.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  17. Harwood CA, Spink PJ, Surentheran T, Leigh IM, de Villiers EM, McGregor JM, Proby CM, Breuer J (1999) Degenerate and nested PCR: a highly sensitive and specific method for detection of human papillomavirus infection in cutaneous warts. J Clin Microbiol 37:3545–3555

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Harwood CA, Surentheran T, McGregor JM, Spink PJ, Leigh IM, Breuer J, Proby CM (2000) Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 61:289–297

    Article  CAS  PubMed  Google Scholar 

  19. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS, Malek S (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435. doi:10.1038/nature08833

    Article  CAS  PubMed  Google Scholar 

  20. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221. doi:10.1016/j.cell.2009.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holderfield M, Lorenzana E, Weisburd B, Lomovasky L, Boussemart L, Lacroix L, Tomasic G, Favre M, Vagner S, Robert C, Ghoddusi M, Daniel D, Pryer N, McCormick F, Stuart D (2014) Vemurafenib cooperates with HPV to promote initiation of cutaneous tumors. Cancer Res. doi:10.1158/0008-5472.CAN-13-1065-T

    PubMed  Google Scholar 

  22. Hong DS, Vence L, Falchook G, Radvanyi LG, Liu C, Goodman V, Legos JJ, Blackman S, Scarmadio A, Kurzrock R, Lizee G, Hwu P (2012) BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin Cancer Res 18:2326–2335. doi:10.1158/1078-0432.CCR-11-2515

    Article  CAS  PubMed  Google Scholar 

  23. Lutzner MA, Blanchet-Bardon C, Orth G (1984) Clinical observations, virologic studies, and treatment trials in patients with epidermodysplasia verruciformis, a disease induced by specific human papillomaviruses. J Investig Dermatol 83:18s–25s

    Article  CAS  PubMed  Google Scholar 

  24. Majewski S, Jablonska S (1995) Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol 131:1312–1318

    Article  CAS  PubMed  Google Scholar 

  25. Orth G, Jablonska S, Jarzabek-Chorzelska M, Obalek S, Rzesa G, Favre M, Croissant O (1979) Characteristics of the lesions and risk of malignant conversion associated with the type of human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res 39:1074–1082

    CAS  PubMed  Google Scholar 

  26. Pfister H (2003) Chapter 8: Human papillomavirus and skin cancer. J Nat Cancer Inst Monogr 2003:52–56

    Article  Google Scholar 

  27. Pfister H (1992) Human papillomaviruses and skin cancer. Semin Cancer Biol 3:263–271

    CAS  PubMed  Google Scholar 

  28. Popp S, Waltering S, Herbst C, Moll I, Boukamp P (2002) UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer 99:352–360. doi:10.1002/ijc.10321

    Article  CAS  PubMed  Google Scholar 

  29. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430. doi:10.1038/nature08902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Resnick RM, Cornelissen MT, Wright DK, Eichinger GH, Fox HS, ter Schegget J, Manos MM (1990) Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Nat Cancer Inst 82:1477–1484

    Article  CAS  PubMed  Google Scholar 

  31. Robert C, Arnault JP, Mateus C (2011) RAF inhibition and induction of cutaneous squamous cell carcinoma. Curr Opin Oncol 23:177–182. doi:10.1097/CCO.0b013e3283436e8c

    Article  CAS  PubMed  Google Scholar 

  32. Spurgeon ME, Lambert PF (2013) Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virol 435:118–130. doi:10.1016/j.virol.2012.09.029

    Article  CAS  Google Scholar 

  33. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, Reis-Filho JS, Kong X, Koya RC, Flaherty KT, Chapman PB, Kim MJ, Hayward R, Martin M, Yang H, Wang Q, Hilton H, Hang JS, Noe J, Lambros M, Geyer F, Dhomen N, Niculescu-Duvaz I, Zambon A, Niculescu-Duvaz D, Preece N, Robert L, Otte NJ, Mok S, Kee D, Ma Y, Zhang C, Habets G, Burton EA, Wong B, Nguyen H, Kockx M, Andries L, Lestini B, Nolop KB, Lee RJ, Joe AK, Troy JL, Gonzalez R, Hutson TE, Puzanov I, Chmielowski B, Springer CJ, McArthur GA, Sosman JA, Lo RS, Ribas A, Marais R (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215. doi:10.1056/NEJMoa1105358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weichsel R, Dix C, Wooldridge L, Clement M, Fenton-May A, Sewell AK, Zezula J, Greiner E, Gostick E, Price DA, Einsele H, Seggewiss R (2008) Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res 14:2484–2491. doi:10.1158/1078-0432.CCR-07-4393

    Article  CAS  PubMed  Google Scholar 

  35. Zhao W, Gu YH, Song R, Qu BQ, Xu Q (2008) Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 22:1226–1233. doi:10.1038/leu.2008.58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Eucharia Iwuanyanwu, Tiffiny Jackson, Shobha Pai, Amy Patel, and Tamara Barnes for their expert assistance in performing skin punch biopsies. We would like to thank Adrienne Howard with her assistance with regulatory considerations. We would like to thank Qin He and Rebecca Simonette for their expert help with the molecular biological experiments. This work was supported by the NIH Clinical and Translational Science Award UL1 RR024148 and by the NIH Cancer Center Support Grant (CCSG) award CA016672 to MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Falchook.

Ethics declarations

Conflict of interest

Naifa Busaidy received research grant funding from Bayer-Onyx. Steven Sherman was a consultant for Bayer, Roche, and Plexxikon. Gerald Falchook received research funding and travel reimbursement for conference attendance from GlaxoSmithKline. The other coauthors report no conflicts of interest.

Additional information

This work was conducted in Houston, Texas, USA with approval of the Institutional Review Board of MD Anderson Cancer Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falchook, G.S., Rady, P., Konopinski, J.C. et al. Merkel cell polyomavirus and human papilloma virus in proliferative skin lesions arising in patients treated with BRAF inhibitors. Arch Dermatol Res 308, 357–365 (2016). https://doi.org/10.1007/s00403-016-1650-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1650-y

Keywords

Navigation