Skip to main content

Advertisement

Log in

Dermal substitute-assisted healing: enhancing stem cell therapy with novel biomaterial design

  • Mini Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The use of dermal substitutes is increasingly widespread but the outcomes of substitute-assisted healing remain functionally deficient. Presently, the most successful scaffolds are acellular polymer matrices, prepared through lyophilization and phase separation techniques, designed to mimic the dermal extracellular matrix. The application of scaffolds containing viable cells has proven to be problematic due to short shelf-life, high cost and death of transplanted cells as a result of immune rejection and apoptosis. Recent advances in biomaterial science have made new techniques available capable of increasing scaffold complexity, allowing the creation of 3D microenvironments that actively control cell behaviour. Importantly, it may be possible through these sophisticated novel techniques, including bio-printing and electrospinning, to accurately direct stem cell behaviour. This complex proposal involves the incorporation of cell-matrix, cell-cell, mechanical cues and soluble factors delivered in a spatially and temporally pertinent manner. This requires accurate modelling of three-dimensional stem cell interactions within niche environments to identify key signalling molecules and mechanisms. The application of stem cells within substitutes containing such environments may result in greatly improved transplanted cell viability. Ultimately this may increase cellular organization and complexity of skin substitutes. This review discusses progress made in improving the efficacy of cellular dermal substitutes for the treatment of cutaneous defects and the potential of evolving new technology to improve current results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    Article  PubMed  CAS  Google Scholar 

  3. Altman AM, Matthias N, Yan Y, Song YH, Bai X, Chiu ES, Slakey DP, Alt EU (2008) Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29(10):1431–1442

    Article  PubMed  CAS  Google Scholar 

  4. Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Pro Natl Acad Sci USA 102(49):17734–17738

    Article  CAS  Google Scholar 

  5. Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, Rodeheaver GT, Peirce SM, Katz AJ (2010) Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 16(5):1595–1606

    Article  PubMed  CAS  Google Scholar 

  6. Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22(7):863–866

    Article  PubMed  CAS  Google Scholar 

  7. Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245

    Article  PubMed  CAS  Google Scholar 

  8. Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo DW (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113(20):2413–2424

    Article  PubMed  CAS  Google Scholar 

  9. Ashton BA, Eaglesom CC, Bab I, Owen ME (1984) Distribution of fibroblastic colony-forming cells in rabbit bone marrow and assay of their osteogenic potential by an in vivo diffusion chamber method. Calcif Tissue Int 36(1):83–86

    Article  PubMed  CAS  Google Scholar 

  10. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362(9385):697–703

    Article  PubMed  CAS  Google Scholar 

  11. Ayres CE, Jha BS, Sell SA, Bowlin GL, Simpson DG (2010) Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):20–34

    Article  PubMed  CAS  Google Scholar 

  12. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (1968) Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 2(7583):1364–1366

    Article  PubMed  CAS  Google Scholar 

  13. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139(4):510–516

    Article  PubMed  Google Scholar 

  14. Badillo AT, Chung S, Zhang L, Zoltick P, Liechty KW (2007) Lentiviral gene transfer of SDF-1 [alpha] to wounds improves diabetic wound healing. J Surg Res 143(1):35–42

    Article  PubMed  CAS  Google Scholar 

  15. Badillo AT, Zhang L, Liechty KW (2008) Stromal progenitor cells promote leukocyte migration through production of stromal-derived growth factor 1alpha: a potential mechanism for stromal progenitor cell-mediated enhancement of cellular recruitment to wounds. J Pediatr Surg 43(6):1128–1133

    Article  PubMed  Google Scholar 

  16. Baumann LS, Shamban A, Lupo MP, Monheit GD, Thomas JA, Murphy DK, Walker PS (2007) Comparison of smooth-gel hyaluronic acid dermal fillers with cross-linked bovine collagen: a multicenter, double-masked, randomized, within-subject study. Dermatol Surg 33(2):S128–S135

    Article  PubMed  CAS  Google Scholar 

  17. Beattie AJ, Gilbert TW, Guyot JP, Yates AJ, Badylak SF (2008) Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng Part A 15(5):1119–1125

    Article  Google Scholar 

  18. Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105(4):733–737

    PubMed  CAS  Google Scholar 

  19. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3):1274–1278

    Article  PubMed  CAS  Google Scholar 

  20. Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 49(3):203–220

    Article  PubMed  Google Scholar 

  21. Beumer GJ, Van Blitterswijk CA, Bakker D, Ponec M (1993) Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. Biomaterials 14(8):598–604

    Article  PubMed  CAS  Google Scholar 

  22. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  PubMed  CAS  Google Scholar 

  23. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  PubMed  CAS  Google Scholar 

  24. Brusselaers N, Pirayesh A, Hoeksema H, Richters CD, Verbelen J, Beele H, Blot SI, Monstrey S (2010) Skin replacement in burn wounds. J Trauma 68(2):490–501

    Article  PubMed  Google Scholar 

  25. Caravaggi C, De Giglio R, Pritelli C, Sommaria M, Dalla Noce S, Faglia E, Mantero M, Clerici G, Fratino P, Dalla Paola L, Mariani G, Mingardi R, Morabito A (2003) HYAFF 11-based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers. Diabetes Care 26(10):2853–2859

    Article  PubMed  Google Scholar 

  26. Carpenter MK, Frey-Vasconcells J, Rao MS (2009) Developing safe therapies from human pluripotent stem cells. Nat Biotech 27(7):606–613

    Article  CAS  Google Scholar 

  27. Casasco M, Casasco A, Icaro Cornaglia A, Farina A, Calligaro A (2004) Differential distribution of elastic tissue in human natural skin and tissue-engineered skin. J Mol Histol 35(4):421–428

    Article  PubMed  CAS  Google Scholar 

  28. Cavazzana-Calvo M, Hacein-Bey S, Basile GS, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672

    Article  PubMed  CAS  Google Scholar 

  29. Chen G, Sato T, Ohgushi H, Ushida T, Tateishi T, Tanaka J (2005) Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials 26(15):2559–2566

    Article  PubMed  CAS  Google Scholar 

  30. Chen RN, Ho HO, Tsai YT, Sheu MT (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25(13):2679–2686

    Article  PubMed  CAS  Google Scholar 

  31. Clark RAF, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127(5):1018–1029

    Article  PubMed  CAS  Google Scholar 

  32. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  PubMed  CAS  Google Scholar 

  33. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  PubMed  CAS  Google Scholar 

  34. Dahl SLM, Koh J, Prabhakar V, Niklason LE (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12(6):659–666

    PubMed  Google Scholar 

  35. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  PubMed  CAS  Google Scholar 

  36. Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, Tickle C (2000) A model for anteroposterior patterning of the vertebrate limb based on sequential long-and short-range SHH signalling and BMP signalling. Development 127(7):1337–1348

    PubMed  CAS  Google Scholar 

  37. Duocastella M, Fernández-Pradas J, Serra P, Morenza J (2008) Jet formation in the laser forward transfer of liquids. Appl Phys A Mater Sci Process 93(2):453–456

    Article  CAS  Google Scholar 

  38. Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94(8):1124–1132

    Article  PubMed  CAS  Google Scholar 

  39. El Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M (2004) The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 25(15):2987–2996

    Article  PubMed  CAS  Google Scholar 

  40. Elcin YM, Dixit V, Gitnick G (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25(7):558–565

    Article  PubMed  CAS  Google Scholar 

  41. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  PubMed  CAS  Google Scholar 

  42. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Article  PubMed  CAS  Google Scholar 

  43. Fan VH, Au A, Tamama K, Littrell R, Richardson LB, Wright JW, Wells A, Griffith LG (2007) Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25(5):1241–1251

    Article  PubMed  CAS  Google Scholar 

  44. Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43(3):419–428

    Article  PubMed  CAS  Google Scholar 

  45. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  PubMed  CAS  Google Scholar 

  46. Fox A, Smythe J, Fisher N, Tyler MPH, McGrouther DA, Watt SM, Harris AL (2008) Mobilization of endothelial progenitor cells into the circulation in burned patients. Br J Surg 95(2):244–251

    Article  PubMed  CAS  Google Scholar 

  47. Fu X, Fang L, Li X, Cheng B, Sheng Z (2006) Enhanced wound healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound Repair Regen 14(3):325–335

    Article  PubMed  Google Scholar 

  48. Fu XB, Fang LJ, Wang YX, Sun TZ, Cheng B (2004) Enhancing the repair quality of skin injury on porcine after autografting with the bone marrow mesenchymal stem cells. Zhonghua Yi Xue Za Zhi 84(11):9204

    Google Scholar 

  49. Fu YC, Nie H, Ho ML, Wang CK, Wang CH (2008) Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 99(4):996–1006

    Article  PubMed  CAS  Google Scholar 

  50. Gimble JM, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369

    Article  PubMed  Google Scholar 

  51. Goetz AK, Scheffler B, Chen HX, Wang S, Suslov O, Xiang H, Brüstle O, Roper SN, Steindler DA (2006) Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells. Proc Natl Acad Sci USA 103(29):11063–11068

    Article  PubMed  CAS  Google Scholar 

  52. Goissis G, Suzigan S, Parreira DR, Maniglia JV, Braile DM, Raymundo S (2000) Preparation and characterization of collagen elastin matrices from blood vessels intended as small diameter vascular grafts. Artif Organs 24(3):217–223

    Article  PubMed  CAS  Google Scholar 

  53. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63

    Article  PubMed  CAS  Google Scholar 

  54. Gronthos S, Zannettino ACW, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  PubMed  CAS  Google Scholar 

  55. Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206(1):229–237

    Article  PubMed  CAS  Google Scholar 

  56. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amedee J (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7):2494–2500

    Article  PubMed  CAS  Google Scholar 

  57. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5(1):1–16

    PubMed  CAS  Google Scholar 

  58. Gupta A, Seifalian AM, Ahmad Z, Edirisinghe MJ, Winslet MC (2007) Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. J Bioact Compat Polym 22(3):265–280

    Article  CAS  Google Scholar 

  59. Hanson SE, Bentz ML, Hematti P (2010) Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 125(2):510–516

    Article  PubMed  CAS  Google Scholar 

  60. Haslik W, Kamolz LP, Nathschläger G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns 33(3):364–368

    Article  PubMed  CAS  Google Scholar 

  61. He W, Horn SW, Hussain MD (2007) Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 334(1–2):173–178

    Article  PubMed  CAS  Google Scholar 

  62. de Vries HJ, Middelkoop E, Mekkes JR, Dutrieux RP, Wildevuur CH, Westerhof H (1994) Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Repair Regen 2(1):37–47

    Article  PubMed  Google Scholar 

  63. Hodgkinson T, Yuan XF, Bayat A (2009) Adult stem cells in tissue engineering. Expert Rev Med Devices 6(6):621–640

    Article  PubMed  Google Scholar 

  64. Hoffman LM, Carpenter MK (2005) Characterization and culture of human embryonic stem cells. Nat Biotechnol 23(6):699–708

    Article  PubMed  CAS  Google Scholar 

  65. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvari L, Chrisey D, Szabó A, Nógrádi A (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11(11–12):1817–1823

    Article  PubMed  CAS  Google Scholar 

  66. Huang S, Chen CS, Ingber DE (1998) Control of cyclin D1, p27Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell 9(11):3179–3193

    PubMed  CAS  Google Scholar 

  67. Huang S, Xu Y, Wu C, Sha D, Fu X (2010) In vitro constitution and in vivo implantation of engineered skin constructs with sweat glands. Biomaterials 31(21):5520–5525

    Article  PubMed  CAS  Google Scholar 

  68. Huang S, Zhang Y, Tang L, Deng Z, Lu W, Feng F, Xu X, Jin Y (2009) Functional bilayered skin substitute constructed by tissue-engineered extracellular matrix and microsphere-incorporated gelatin hydrogel for wound repair. Tissue Eng Part A 15(9):2617–2624

    Article  PubMed  CAS  Google Scholar 

  69. Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9–10):1346–1358

    PubMed  CAS  Google Scholar 

  70. Jahoda CA (2003) Cell movement in the hair follicle dermis—more than a two-way street? J Invest Dermatol 121(6):ix–xi

    Google Scholar 

  71. Jahoda CAB, Whitehouse CJ, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12(6):849–859

    Article  PubMed  Google Scholar 

  72. Pachence JM (1996) Collagen-based devices for soft tissue repair. J Biomed Mater Res 33(1):35–40

    Article  PubMed  CAS  Google Scholar 

  73. Jayasinghe SN, Irvine S, McEwan JR (2007) Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds. Nanomedicine 2(4):555–567

    Article  PubMed  CAS  Google Scholar 

  74. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  PubMed  CAS  Google Scholar 

  75. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724

    Article  PubMed  CAS  Google Scholar 

  76. Kang X, Xie Y, Powell HM, James Lee L, Belury MA, Lannutti JJ, Kniss DA (2007) Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials 28(3):450–458

    Article  PubMed  CAS  Google Scholar 

  77. Kastrinaki MC, Sidiropoulos P, Roche S, Ringe J, Lehmann S, Kritikos H, Vlahava VM, Delorme B, Eliopoulos GD, Jorgensen C (2008) Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann Rheum Dis 67(6):741–749

    Article  PubMed  CAS  Google Scholar 

  78. Kearney JN (2001) Clinical evaluation of skin substitutes. Burns 27(5):545–551

    Article  PubMed  CAS  Google Scholar 

  79. Kemp P (2006) History of regenerative medicine: looking backwards to move forwards. Regen Med 1(5):653–669

    Article  PubMed  Google Scholar 

  80. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  PubMed  CAS  Google Scholar 

  81. Kim MS, Bhang SH, Yang HS, Rim NG, Jun I, Kim SI, Kim BS, Shin H (2010) Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Tissue Eng Part A 16(10):2999–3010

    Article  PubMed  CAS  Google Scholar 

  82. Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056

    Article  PubMed  CAS  Google Scholar 

  83. Kolokol’chikova EG, Budkevich LI, Bobrovnikov AE, Badikova AK, Tumanov VP (2001) Morphological changes in burn wounds after transplantation of allogenic fibroblasts. Bull Exp Biol Med 131(1):89–93

    Article  PubMed  Google Scholar 

  84. Kotton DN, Fine A (2003) Derivation of lung epithelium from bone marrow cells. Cytotherapy 5(2):169–173

    Article  PubMed  CAS  Google Scholar 

  85. Kumar RK, O’Grady R, Li W, Smith LW, Rhodes GC (1991) Primary culture of adult mouse lung fibroblasts in serum-free medium: responses to growth factors. Exp Cell Res 193(2):398–404

    Article  PubMed  CAS  Google Scholar 

  86. Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204

    Article  PubMed  CAS  Google Scholar 

  87. Lajtha LG (2006) Stem cell concepts. Differentiation 14(1–3):23–33

    Google Scholar 

  88. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR (1997) The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil 18(2):147–155

    Article  PubMed  CAS  Google Scholar 

  89. Lee RH, Kim BC, Choi IS, Kim H, Choi HS, Suh KT, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14(4–6):311–324

    Article  PubMed  CAS  Google Scholar 

  90. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  PubMed  CAS  Google Scholar 

  91. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res Part A 60(4):613–621

    Article  CAS  Google Scholar 

  92. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K, Qu X, Xiang T, Lu D, Chi X, Gao G, Ji W, Ding M, Deng H (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3(6):587–590

    Article  PubMed  CAS  Google Scholar 

  93. Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, Huang S, Jin Y (2008) Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs 32(12):925–931

    Article  PubMed  Google Scholar 

  94. Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8(11):437–441

    Article  PubMed  CAS  Google Scholar 

  95. Lund AW, Yener B, Stegemann JP, Plopper GE (2009) The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev 15(3):371–380

    Article  PubMed  Google Scholar 

  96. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  PubMed  CAS  Google Scholar 

  97. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  PubMed  CAS  Google Scholar 

  98. Mansbridge J, Liu K, Patch R, Symons K, Pinney E (1998) Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range. Tissue Eng 4(4):403–414

    Article  PubMed  CAS  Google Scholar 

  99. Mansilla E, Marin GH, Sturla F, Drago HE, Gil MA, Salas E, Gardiner MC, Piccinelli G, Bossi S, Petrelli L, Iorio G, Ramos CA, Soratti C (2005) Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries. Transplant Proc 37(1):292–294

    Article  PubMed  CAS  Google Scholar 

  100. Mei Y, Gerecht S, Taylor M, Urquhart AJ, Bogatyrev SR, Cho SW, Davies MC, Alexander MR, Langer RS, Anderson DG (2009) Mapping the interactions among biomaterials, adsorbed proteins, and human embryonic stem cells. Adv Mater 21(27):2781–2786

    Article  CAS  Google Scholar 

  101. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly (glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27(2):183–189

    Article  PubMed  CAS  Google Scholar 

  102. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  PubMed  CAS  Google Scholar 

  103. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103

    Article  PubMed  CAS  Google Scholar 

  104. Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    Article  PubMed  Google Scholar 

  105. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  PubMed  CAS  Google Scholar 

  106. Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313(16):3377–3385

    Article  PubMed  CAS  Google Scholar 

  107. Mizuno H, Miyamoto M, Shimamoto M, Koike S, Hyakusoku H, Kuroyanagi Y (2010) Therapeutic angiogenesis by autologous bone marrow cell implantation together with allogeneic cultured dermal substitute for intractable ulcers in critical limb ischaemia. J Plast Reconstr Aesthet Surg 63(11):1875–1882

    Article  PubMed  Google Scholar 

  108. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly (-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422

    Article  PubMed  CAS  Google Scholar 

  109. Moriyama K, Shimokawa H, Susami T, Sasaki S, Kuroda T (1991) Effects of growth factors on mucosal scar fibroblasts in culture—a possible role of growth factors in scar formation. Matrix 11(3):190

    PubMed  CAS  Google Scholar 

  110. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417

    Article  PubMed  CAS  Google Scholar 

  111. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D (2005) Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41(5):837–843

    Article  PubMed  Google Scholar 

  112. Müller LUW, Daley GQ, Williams DA (2009) Upping the ante: recent advances in direct reprogramming. Mol Ther 17(6):947–953

    Article  PubMed  CAS  Google Scholar 

  113. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4(8):1168–1177

    Article  PubMed  CAS  Google Scholar 

  114. Nakagawa H, Akita S, Fukui M, Fujii T, Akino K (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol 153(1):29–36

    Article  PubMed  CAS  Google Scholar 

  115. Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, Iwata H (2007) Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 28(6):1048–1060

    Article  PubMed  CAS  Google Scholar 

  116. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666

    Article  PubMed  CAS  Google Scholar 

  117. Nambu M, Kishimoto S, Nakamura S, Mizuno H, Yanagibayashi S, Yamamoto N, Azuma R, Kiyosawa T, Ishihara M (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321

    Article  PubMed  CAS  Google Scholar 

  118. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, Grafahrend D, Groger A, Hemmrich K, Herr A (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29(3):302–313

    Article  PubMed  CAS  Google Scholar 

  119. Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH (2001) Evaluation of ultra-thin poly (-caprolactone) films for tissue-engineered skin. Tissue Eng 7(4):441–455

    Article  PubMed  CAS  Google Scholar 

  120. Nie C, Yang D, Morris SF (2009) Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses 72(6):679–682

    Article  PubMed  CAS  Google Scholar 

  121. Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP (2005) Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care 18(5):258–266

    Article  PubMed  Google Scholar 

  122. Odde D, Renn M (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67(3):312–318

    Article  PubMed  CAS  Google Scholar 

  123. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  PubMed  CAS  Google Scholar 

  124. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2007) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  PubMed  CAS  Google Scholar 

  125. Pek YS, Wan ACA, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31(3):385–391

    Article  PubMed  CAS  Google Scholar 

  126. Pessina A, Gribaldo L (2006) The key role of adult stem cells: therapeutic perspectives. Curr Med Res Opin 22(11):2287–2300

    Article  PubMed  CAS  Google Scholar 

  127. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1):127–134

    Article  PubMed  CAS  Google Scholar 

  128. Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29(7):834–843

    Article  PubMed  CAS  Google Scholar 

  129. Price RD, Das-Gupta V, Harris PA, Leigh IM, Navsaria HA (2004) The role of allogenic fibroblasts in an acute wound healing model. Plast Reconstr Surg 113(6):1719–1729

    Article  PubMed  Google Scholar 

  130. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  PubMed  CAS  Google Scholar 

  131. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1):11917–11923

    Article  PubMed  CAS  Google Scholar 

  132. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, Penn M (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19(4):399–408

    Article  PubMed  Google Scholar 

  133. Rasulov MF, Vasil’chenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL, Pidtsan RE, Potapov IV (2005) First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 139(1):141–144

    Article  PubMed  CAS  Google Scholar 

  134. Ravanti L, Heino J, López-Ot n C, Kähäri VM (1999) Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem 274(4):2446–2455

    Article  PubMed  CAS  Google Scholar 

  135. Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Reynolds AJ, Hole N, Jahoda CAB (2005) Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering. J Investig Dermatol Symp Proc 10(3):180–183

    Article  PubMed  Google Scholar 

  136. Romanelli M, Dini V, Bertone M, Barbanera S, Brilli C (2007) OASIS® wound matrix versus Hyaloskin® in the treatment of difficult to heal wounds of mixed arterial/venous aetiology. Int Wound J 4(1):3–7

    Article  PubMed  Google Scholar 

  137. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438

    Article  PubMed  CAS  Google Scholar 

  138. Sanders JE, Stiles CE, Hayes CL (2000) Tissue response to single-polymer fibers of varying diameters: evaluation of fibrous encapsulation and macrophage density. J Biomed Mater Res 52(1):231–237

    Article  PubMed  CAS  Google Scholar 

  139. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    PubMed  CAS  Google Scholar 

  140. Schlüter H, Kaur P (2009) Bioengineered human skin from embryonic stem cells. Lancet 374(9703):1725–1726

    Article  PubMed  Google Scholar 

  141. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7

    PubMed  CAS  Google Scholar 

  142. Seppä H, Grotendorst G, Seppä S, Schiffmann E, Martin GR (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 92(2):584–588

    Article  PubMed  Google Scholar 

  143. Shigehiko S, Katsuya K, Faramartz A, Naoki M, Yoshihiko N, Yoshito I (2000) Long-term follow-up study of artificial dermis composed of outer silicone layerand inner collagen sponge. Br J Plast Surg 53(8):659–666

    Article  Google Scholar 

  144. Singh M, Berkland C, Detamore MS (2008) Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering. Tissue Eng Part B Rev 14(4):341–366

    Article  PubMed  CAS  Google Scholar 

  145. Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100(5):2397–2402

    Article  PubMed  CAS  Google Scholar 

  146. Stoff A, Rivera AA, Banerjee NS, Moore ST, Numnum TM, Espinosa-de-los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D (2008) Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 18(4):362–369

    Article  PubMed  Google Scholar 

  147. Strande LF, Foley ST, Doolin EJ, Hewitt CW (1997) In vitro bioartificial skin culture model of tissue rejection and inflammatory/immune mechanisms. Transplant Proc 29(4):2118–2119

    Article  PubMed  CAS  Google Scholar 

  148. Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9(1):5–15

    Article  Google Scholar 

  149. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  150. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  151. Takemoto S, Morimoto N, Kimura Y, Taira T, Kitagawa T, Tomihata K, Tabata Y, Suzuki S (2008) Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng Part A 14(10):1629–1638

    Article  PubMed  CAS  Google Scholar 

  152. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  153. Tögel F, Westenfelder C (2007) Adult bone marrow-derived stem cells for organ regeneration and repair. Dev Dyn 236(12):3321–3331

    Article  PubMed  CAS  Google Scholar 

  154. Tran KT, Lamb P, Deng JS (2005) Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J Dermatol Sci 40(1):11–20

    Article  PubMed  CAS  Google Scholar 

  155. Uzunismail A, Duman A, Perk C, Findik H, Beyhan G (2008) The effects of acellular dermal allograft (AlloDerm®) interface on silicone-related capsule formation—experimental study. Eur J Plast Surg 31(4):179–185

    Article  Google Scholar 

  156. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  PubMed  CAS  Google Scholar 

  157. Vats A, Tolley NS, Polak JM, Gough JE (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28(3):165–172

    Article  PubMed  CAS  Google Scholar 

  158. Wainwright D, Madden M, Luterman A, Hunt J, Monafo W, Heimbach D, Kagan R, Sittig K, Dimick A, Herndon D (1996) Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 17(2):124–136

    Article  PubMed  CAS  Google Scholar 

  159. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248

    Article  PubMed  CAS  Google Scholar 

  160. Watanabe S, Wang XEN, Hirose M, Oide H, Kitamura T, Miyazaki A, Sato N (1995) Basic fibroblast growth factor accelerates gastric mucosal restoration in vitro by promoting mesenchymal cell migration and proliferation. J Gastroenterol Hepatol 10(6):627–632

    Article  PubMed  CAS  Google Scholar 

  161. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  PubMed  CAS  Google Scholar 

  162. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    Article  PubMed  CAS  Google Scholar 

  163. Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM (2001) Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 53(11):1427–1437

    Article  PubMed  CAS  Google Scholar 

  164. Wiseman DM, Polverini PJ, Kamp DW, Leibovich SJ (1988) Transforming growth factor-beta (TGF [beta]) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 157(2):793–800

    Article  PubMed  CAS  Google Scholar 

  165. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528

    Article  PubMed  CAS  Google Scholar 

  166. Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35):7339–7349

    Article  PubMed  CAS  Google Scholar 

  167. Xu T, Jin J, Gregory C, Hickman J, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  PubMed  CAS  Google Scholar 

  168. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26(29):5864–5871

    Article  PubMed  CAS  Google Scholar 

  169. Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly (L lactic acid) and poly (L lactic co glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446

    Article  PubMed  CAS  Google Scholar 

  170. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  PubMed  CAS  Google Scholar 

  171. Yang X, Shah JD, Wang H (2009) Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A 15(4):945–956

    Article  PubMed  CAS  Google Scholar 

  172. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103(18):6907–6912

    Article  PubMed  CAS  Google Scholar 

  173. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, Okuchi K, Nonomura A (2008) Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg 121(3):860–877

    Article  PubMed  CAS  Google Scholar 

  174. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  PubMed  CAS  Google Scholar 

  175. Zhu X, Cui W, Li X, Jin Y (2008) Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 9(7):1795–1801

    Article  PubMed  CAS  Google Scholar 

  176. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J 17(5):2260–2262

    PubMed  CAS  Google Scholar 

  177. Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12(6):295–310

    Article  PubMed  CAS  Google Scholar 

  178. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF-fibrin matrices for endothelialization. J Control Release 72(1–3):101–113

    Article  PubMed  CAS  Google Scholar 

  179. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

Related articles recently published in Archives of Dermatological Research (selected by the journal’s editorial staff)

  1. Kim WS, Park BS, Sung JH (2009) Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res 301:329–336

    Article  PubMed  Google Scholar 

  2. Salvolini E, Lucarini G, Zizzi A, Orciani M, Di Benedetto G, Di Primio R (2010) Human skin-derived mesenchymal stem cells as a source of VEGF and nitric oxide. Arch Dermatol Res 302:367–374

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkinson, T., Bayat, A. Dermal substitute-assisted healing: enhancing stem cell therapy with novel biomaterial design. Arch Dermatol Res 303, 301–315 (2011). https://doi.org/10.1007/s00403-011-1131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-011-1131-2

Keywords

Navigation