Skip to main content

Advertisement

Log in

Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal–epidermal junction in human skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recently, we reported that heparanase plays important roles in barrier-disrupted skin, leading to increased interaction of growth factors between epidermis and dermis and facilitating various cutaneous changes, including epidermal hyperplasia and wrinkle formation. However, the role of heparanase in sun-exposed skin remains unknown. Here, we show that heparanase in human keratinocytes is activated by ultraviolet B (UVB) exposure and that heparan sulfate of perlecan is markedly degraded in UVB-irradiated human skin. The degradation of heparan sulfate resulted in a marked reduction of binding activity of the basement membrane for vascular endothelial growth factor, fibroblast growth factor-2 and -7 at the dermal–epidermal junction. Degradation of heparan sulfate was observed not only in acutely UVB-irradiated skin, but also in skin chronically exposed to sun. Interestingly, heparan sulfate was found to be degraded in sun-exposed skin, but not in sun-protected skin. These findings suggest that chronic UVB exposure activates heparanase, leading to degradation of heparan sulfate in the basement membrane and increased growth factor interaction between epidermis and dermis. These changes may facilitate photo-aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TEWL:

Transepidermal water loss

UVB:

Ultraviolet B

VEGF:

Vascular endothelial growth factor

FGF:

Fibroblast growth factor

HS:

Heparan sulfate

HSPGs:

Heparan sulfate proteoglycans

MED:

Minimal erythema dose

DEJ:

Dermal epidermal junction(s)

MMP:

Matrix metalloproteinase

ATP:

Adenosine triphosphate

References

  1. Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176

    Article  PubMed  CAS  Google Scholar 

  2. Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354

    Article  PubMed  CAS  Google Scholar 

  3. Behzad F, Brenchley PE (2003) A multiwell format assay for heparanase. Anal Biochem 320(2):207–213

    Article  PubMed  CAS  Google Scholar 

  4. Bernard D, Mehul B, Delattre C, Simonetti L, Thomas-Collignon A, Schmidt R (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Investig Dermatol 117(5):1266–1273

    Article  PubMed  CAS  Google Scholar 

  5. Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282(19):14645–14654

    Article  PubMed  CAS  Google Scholar 

  6. Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–1442

    Article  PubMed  Google Scholar 

  7. Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Investig Dermatol 105(1):44–50

    Article  PubMed  CAS  Google Scholar 

  8. Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I (2001) Heparanase as mediator of angiogenesis: mode of action. Faseb J 15(9):1661–1663

    PubMed  CAS  Google Scholar 

  9. Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR (2005) Use of sulfated linked cyclitols as heparan sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. J Biol Chem 280(10):8842–8849

    Article  PubMed  CAS  Google Scholar 

  10. Freeman C, Parish CR (1998) Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 330(Pt 3):1341–1350

    PubMed  CAS  Google Scholar 

  11. Friedl A, Chang Z, Tierney A, Rapraeger AC (1997) Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol 150(4):1443–1455

    PubMed  CAS  Google Scholar 

  12. Fuki II, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275(40):31554

    PubMed  CAS  Google Scholar 

  13. Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21(3 Pt 2):610–613

    Article  PubMed  CAS  Google Scholar 

  14. Gingis-Velitski S, Ishai-Michaeli R, Vlodavsky I, Ilan N (2007) Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing. Faseb J 21(14):3986–3993

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths CE (1992) The clinical identification and quantification of photodamage. Br J Dermatol 127(Suppl 41):37–42

    Article  PubMed  Google Scholar 

  16. Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Investig Dermatol 127(2):362–371

    Article  PubMed  CAS  Google Scholar 

  17. Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev 6(8):646–656

    Article  CAS  Google Scholar 

  18. Iriyama S, Matsunaga Y, Amano S (2010) Heparanase activation induces epidermal hyperplasia, angiogenesis, lymphangiogenesis and wrinkles. Exp Dermatol 19(11):965–972

    Google Scholar 

  19. Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153(3):607–612

    Article  PubMed  CAS  Google Scholar 

  20. Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169(4):1496–1503

    Article  PubMed  CAS  Google Scholar 

  21. Kajiya K, Kunstfeld R, Detmar M, Chung JH (2007) Reduction of lymphatic vessels in photodamaged human skin. J Dermatol Sci 47(3):241–243

    Article  PubMed  Google Scholar 

  22. Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274(22):15947–15952

    Article  PubMed  CAS  Google Scholar 

  23. Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differ Res Biol Divers 74(5):235–243

    CAS  Google Scholar 

  25. Koyama Y, Naruo H, Yoshitomi Y, Munesue S, Kiyono S, Kusano Y, Hashimoto K, Yokoi T, Nakanishi H, Shimizu S, Okayama M, Oguri K (2008) Matrix metalloproteinase-9 associated with heparan sulphate chains of GPI-anchored cell surface proteoglycans mediates motility of murine colon adenocarcinoma cells. J Biochem 143(5):581–592

    Article  PubMed  CAS  Google Scholar 

  26. Kreuger J, Salmivirta M, Sturiale L, Gimenez-Gallego G, Lindahl U (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J Biol Chem 276(33):30744–30752

    Article  PubMed  CAS  Google Scholar 

  27. Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Investig Dermatol 73(1):59–66

    Article  PubMed  CAS  Google Scholar 

  28. Lindner JR, Hillman PR, Barrett AL, Jackson MC, Perry TL, Park Y, Datta S (2007) The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts. BMC Dev Biol 7:121

    Article  PubMed  Google Scholar 

  29. Luo Y, Ye S, Kan M, McKeehan WL (2006) Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 281(30):21052–21061

    Article  PubMed  CAS  Google Scholar 

  30. Maas-Szabowski N, Shimotoyodome A, Fusenig NE (1999) Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 112(Pt 12):1843–1853

    PubMed  Google Scholar 

  31. Malgouries S, Donovan M, Thibaut S, Bernard BA (2008) Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol 17(12):1017–1023

    Google Scholar 

  32. Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259(4):2283–2290

    PubMed  CAS  Google Scholar 

  33. Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471(3):M99–M108

    PubMed  CAS  Google Scholar 

  34. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development (Cambridge, England) 134(23):4177–4186

    CAS  Google Scholar 

  35. Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728

    Article  PubMed  CAS  Google Scholar 

  36. Pikas DS, Li JP, Vlodavsky I, Lindahl U (1998) Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 273(30):18770–18777

    Article  PubMed  CAS  Google Scholar 

  37. Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636

    Article  PubMed  CAS  Google Scholar 

  38. Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279(9):8047–8055

    Article  PubMed  CAS  Google Scholar 

  39. Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118(Pt 15):3387–3395

    Article  PubMed  CAS  Google Scholar 

  40. Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281(33):23804–23811

    Article  PubMed  CAS  Google Scholar 

  41. Spencer JL, Stone PJ, Nugent MA (2006) New insights into the inhibition of human neutrophil elastase by heparin. Biochemistry 45(30):9104–9120

    Article  PubMed  CAS  Google Scholar 

  42. Tammela T, He Y, Lyytikka J, Jeltsch M, Markkanen J, Pajusola K, Yla-Herttuala S, Alitalo K (2007) Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res 100(10):1468–1475

    Article  PubMed  CAS  Google Scholar 

  43. Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Investig 108(3):341–347

    PubMed  CAS  Google Scholar 

  44. Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15(2):177–186

    Article  PubMed  CAS  Google Scholar 

  45. Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105(7):2745–2764

    Article  PubMed  CAS  Google Scholar 

  46. Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M (2005) Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol 152(1):115–121

    Article  PubMed  CAS  Google Scholar 

  47. Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R (2005) Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. Faseb J 19(2):211–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Junko Hatori for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Iriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriyama, S., Matsunaga, Y., Takahashi, K. et al. Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal–epidermal junction in human skin. Arch Dermatol Res 303, 253–261 (2011). https://doi.org/10.1007/s00403-010-1117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1117-5

Keywords

Navigation