Skip to main content

Advertisement

Log in

Transduction of β3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

αvβ3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express αvβ3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with β3 integrin subunit cDNA by a retrovirus-mediated transduction method express αvβ3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with β-galactosidase (β-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these β3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. β3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (β-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to αvβ3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of β3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that β3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

KBM:

Keratinocyte basal medium

KGM:

Keratinocyte growth medium

PS:

Penicillin and streptomycin

β-gal:

β-Galactosidase

GEL:

Gelatin

References

  1. Adams JC, Watt FM (1991) Expression of β1, β3, β4, and β5 integrins by human epidermal keratinocytes and non-differentiating keratinocytes. J Cell Biol 115:829–841

    Article  PubMed  CAS  Google Scholar 

  2. Bafetti LM, Young TN, Itoh Y, Stack MS (1998) Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273:143–149

    Article  PubMed  CAS  Google Scholar 

  3. Cavani A, Zambruno G, Marconi A, Manca V, Marchetti M, Giannetti A (1993) Distinctive integrin expression in the newly forming epidermis during wound healing in humans. J Invest Dermatol 101:600–604

    Article  PubMed  CAS  Google Scholar 

  4. Cheresh DA (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 84:6471–6475

    Article  PubMed  CAS  Google Scholar 

  5. Clark RAF (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 94(Suppl):128S–134S

    Article  PubMed  CAS  Google Scholar 

  6. Clark RAF (1996) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 3–50

    Google Scholar 

  7. Clark RAF, Ashcroft GS, Spencer M-J, Larjava H, Ferguson MWJ (1996) Re-epithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins. Br J Dermatol 135:46–51

    Article  PubMed  CAS  Google Scholar 

  8. Daniels JT, Kearney JN, Ingham E (1997) An investigation into the potential of extracellular matrix factors for attachment and proliferation of human keratinocytes in skin substitutes. Burns 23:26–31

    Article  PubMed  CAS  Google Scholar 

  9. Davis GE (1992) Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 182:1025–1031

    Article  PubMed  CAS  Google Scholar 

  10. Enenstein J, Waleh NS, Kramer RH (1992) Basic FGF and TGF-β differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 203:499–503

    Article  PubMed  CAS  Google Scholar 

  11. Fitzgerald LA, Steiner B, Rall SC, Lo S-S, Phillips DR (1987) Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J Biol Chem 262:3936–3939

    PubMed  CAS  Google Scholar 

  12. Gailit J, Welch MP, Clark RAF (1994) TGF-β1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol 103:221–227

    Article  PubMed  CAS  Google Scholar 

  13. Gailit J, Clark RAF (1996) Studies in vitro on the role of αv and β1 integrins in the adhesion of human dermal fibroblasts to provisional matrix proteins fibronectin, vitronectin, and fibrinogen. J Invest Dermatol 106:102–108

    Article  PubMed  CAS  Google Scholar 

  14. Garlick JA, Katz AB, Fenjves ES, Taichman LB (1991) Retrovirus-mediated transduction of cultured epidermal keratinocytes. J Invest Dermatol 97:824–829

    Article  PubMed  CAS  Google Scholar 

  15. Ghazizadeh S, Carroll JM, Taichman LB (1997) Repression of retrovirus-mediated transgene expression by interferons: implications for gene therapy. J Virol 71:9163–9169

    PubMed  CAS  Google Scholar 

  16. Haapasalmi K, Zhang K, Tonnesen MG, Olerud J, Sheppard D, Salo T, Kramer R, Clark RAF, Uitto V-J, Larjava H (1996) Keratinocytes in human wounds express αvβ6 integrin. J Invest Dermatol 106:42–48

    Article  PubMed  CAS  Google Scholar 

  17. Hofmann UB, Westphal JR, Waas ET, Becker JC, Ruiter DJ, van Muijen GNP (2000) Coexpression of integrin αvβ3 and matrix metalloproteinase-2 (MMP-2) coincides with MMP-2 activation: correlation with melanoma progression. J Invest Dermatol 115:625–632

    Article  PubMed  CAS  Google Scholar 

  18. Horch RE, Bannash H, Kopp J, Andree C, Stark B (1998) Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant 7(3):309–317

    Article  PubMed  CAS  Google Scholar 

  19. Horton MA, Lewis D, McNulty K, Pringle JAS, Chambers TJ (1985) Monoclonal antibodies to osteoclastomas (giant cell bone tumors): definition of osteoclast-specific cellular antigens. Cancer Res 45:5663–5669

    PubMed  CAS  Google Scholar 

  20. Hsu M-Y, Shih D-T, Meier FE, Belle PV, Hsu J-Y, Elder DE, Buck CA, Herlyn M (1998) Adenoviral gene transfer of β3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol 153:1435–1442

    PubMed  CAS  Google Scholar 

  21. Huang X, Wu J, Spong S, Sheppard D (1998) The integrin αvβ6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. J Cell Sci 111:2189–2195

    PubMed  CAS  Google Scholar 

  22. Hunyadi J, Farkas B, Bertenyi C, Olah J, Dobozy A (1987) Keratinocyte grafting: covering of skin defects by separated autologous keratinocytes in a fibrin net. J Invest Dermatol 89:119–120

    Article  PubMed  CAS  Google Scholar 

  23. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  24. Jones JI, Prevette T, Gockerman A, Clemmons DR (1996) Ligand occupancy of the αvβ3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor 1. Proc Natl Acad Sci USA 93:2482–2487

    Article  PubMed  CAS  Google Scholar 

  25. Jones PL, Rabinovitch M (1996) Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. Circ Res 79:1131–1142

    PubMed  CAS  Google Scholar 

  26. Jones PL, Crack J, Rabinovitch M (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the αvβ3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293

    Article  PubMed  CAS  Google Scholar 

  27. Jones PL, Jones FS, Zhou B, Rabinovitch M (1999) Induction of vascular smooth muscle cell tenascin-C gene expression by dentured type I collagen is dependent upon a β3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J Cell Sci 112:435–445

    PubMed  CAS  Google Scholar 

  28. Juhasz I, Murphy GF, Yan H-C, Herlyn M, Albelda SM (1993) Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 143:1458–1469

    PubMed  CAS  Google Scholar 

  29. Kanda S, Kuzuya M, Ramos MA, Koike T, Yoshino K, Ikeda S, Iguchi A (2000) Matrix metalloproteinase and αvβ3 integrin-dependent vascular smooth muscle cell invasion through a type I collagen lattice. Arterioscler Thromb Vasc Biol 20:998–1005

    PubMed  CAS  Google Scholar 

  30. Khatib AM, Nip J, Fallavollita L, Lehmann M, Jensen G, Brodt P (2001) Regulation of urokinase plasminogen activator/plasmin mediated invasion of melanoma cells by the integrin vitronectin receptor αvβ3. Int J Cancer 91:300–308

    Article  PubMed  CAS  Google Scholar 

  31. Kim JP, Zhang K, Chen JD, Wynn KC, Kramer RH, Woodley DT (1992) Mechanism of human keratinocyte migration on fibronectin: unique roles of RGD site and integrins. J Cell Physiol 151:443–450

    Article  PubMed  CAS  Google Scholar 

  32. Kim JP, Zhang K, Chen JD, Kramer RH, Woodley DT (1994) Vitronectin-driven human keratinocyte locomotion is mediated by the αvβ5 integrin receptor. J Biol Chem 269:26926–26932

    PubMed  CAS  Google Scholar 

  33. Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol Biol Cell 4:973–982

    PubMed  CAS  Google Scholar 

  34. Kubo M, Kan M, Isemura M, Yamane I, Tagami H (1987) Effects of extracellular matrices on human keratinocyte adhesion and growth and on its secretion and deposition of fibronectin in culture. J Invest Dermatol 88:594–601

    Article  PubMed  CAS  Google Scholar 

  35. Kubo M, Van De Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, Clark RAF (2001) Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 117:1369–1381

    Article  PubMed  CAS  Google Scholar 

  36. Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA (1992) Requirement of the integrin β3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117:1101–1107

    Article  PubMed  CAS  Google Scholar 

  37. Larjava H, Salo T, Haapasalmi K, Kramer RH, Heino J (1993) Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 92:1425–1435

    PubMed  CAS  Google Scholar 

  38. Markowitz D, Goff S, Bank A (1988) Construction and use of a safe and efficient amphotrophic packaging cell line. Virology 167:400–406

    PubMed  CAS  Google Scholar 

  39. McClain SA. Simon M, Jones E, Nandi A, Gailit JO, Tonnesen MG, Newman D, Clark RAF (1996) Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. Am J Pathol 149:1257–1270

    Google Scholar 

  40. Miller AD (1992) Retroviral vectors. Curr Top Microbiol Immunol 158:1–24

    Article  PubMed  CAS  Google Scholar 

  41. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596

    Article  PubMed  CAS  Google Scholar 

  42. Naito M, Funaki C, Hayashi T, Yamada K, Asai K, Yoshimine N,Kuzuya F (1992) Substrate-bound fibrinogen, fibrin and other cell attachment promoting proteins as a scaffold for cultured vascular smooth muscle cells. Atherosclerosis 96:227–234

    Article  PubMed  CAS  Google Scholar 

  43. O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1:75–78

    Article  Google Scholar 

  44. Petitclerc E, Strömblad S, Von Schalscha TL, Mitjian F, Piulats J, Montgomery AMP, Cheresh DA, Brook PC (1999) Integrin αvβ3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 59:2724–2730

    PubMed  CAS  Google Scholar 

  45. Rennekampff HO, Kiessig V, Hansbrough JF (1996) Current concepts in the development of cultured skin replacement. J Surg Res 62:288–295

    Article  PubMed  CAS  Google Scholar 

  46. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344

    Article  PubMed  CAS  Google Scholar 

  47. Rusnati M, Targhetti E, Dell’Era P, Gualandris A, Presta M (1997) αvβ3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell 8:2449–2461

    PubMed  CAS  Google Scholar 

  48. Seftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E, Hendrix MJC (1992) Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89:1557–1561

    Article  PubMed  CAS  Google Scholar 

  49. Sepp NT, Li L-J, Lee KH, Brown EJ, Caughman SW, Lawley TJ, Swerlick RA (1994) Basic fibroblast growth factor increases expression of the αvβ3 integrin complex on human microvascular endothelial cells. J Invest Dermatol 103:295–299

    Article  PubMed  CAS  Google Scholar 

  50. Schneller M, Vuori K, Ruoslahti E (1997) αvβ3 integrin associates with activated insulin and PDGFβ receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607

    Article  PubMed  CAS  Google Scholar 

  51. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892

    Article  PubMed  CAS  Google Scholar 

  52. Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83:637–646

    Article  PubMed  CAS  Google Scholar 

  53. Vuori K, Ruoslahti E (1994) Association of insulin receptor substrate-1 with integrins. Science 266:1576–1578

    Article  PubMed  CAS  Google Scholar 

  54. Woodard AS, Garcia-Cardeña G, Leong M, Madri JA, Sessa WC, Languino LR (1998) The synergistic activity of αvβ3 integrin and PDGF receptor increases cell migration. J Cell Sci 111:469–478

    PubMed  CAS  Google Scholar 

  55. Wu Y-J, Parker LM, Binder NE, Beckett MA, Sinard JH, Griffiths CT, Rheinwald JG (1982) The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells nonkeratinizing epithelia. Cell 31:693–703

    Article  PubMed  CAS  Google Scholar 

  56. Yamada KM, Gailit J, Clark RAF (1996) Integrins in wound repair. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 311–338

    Google Scholar 

  57. Zheng B, Duan C, Clemmons DR (1998) The effect of extracellular matrix proteins on porcine smooth muscle cell insulin-like growth factor (IGF) binding protein-5 synthesis and responsiveness to IGF-1. J Biol Chem 273:8994–9000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding of this work was provided by Research Project Grant (13-204) from Kawasaki Medical School, SHISEIDO Grant for Skin Aging Research (SRG#10048), JSPS.KAKENHI (15390543) to M. Kubo; and by National Institute of Health Grant (AG10143) to R. A. F. Clark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoko Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, M., Clark, R.A.F., Katz, A.B. et al. Transduction of β3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin. Arch Dermatol Res 299, 13–24 (2007). https://doi.org/10.1007/s00403-006-0718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0718-5

Keywords

Navigation