Skip to main content
Log in

Space available for trans-sacral implants to treat fractures of the pelvis assessed by virtual implant positioning

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The use of trans-sacral implants to treat fractures of the sacrum is limited by the variable pelvic anatomy. We were interested in how many trans-sacral implants can be placed per pelvis? If a trans-sacral implant cannot be placed in S1, where is the cortex perforated, and is the use of sacroiliac screws safe in these pelves?

Materials and methods

3D pelvic models were created from CT scans of 156 individuals without fractures (92 European and 64 Japanese, 79 male and 77 female, mean age 66.7 ± 13.7 years). Trans-sacral implants with a diameter of 7.3 mm were positioned virtually with and without a surrounding safe zone of 12 mm diameter.

Results

Fifty-one percent of pelves accommodated trans-sacral implants in S1 with a safe zone. Twenty-two percent did not offer enough space in S1 for an implant even when ignoring the safe zone. Every pelvis had sufficient space for a trans-sacral implant in S2, in 78% including a safe zone as well. In S1, implant perforation was observed in the sacral ala and iliac fossa in 69%, isolated iliac fossa perforation in 23% and perforation of the sacral ala in 8%. Bilateral sacroiliac screw placement was always possible in S1.

Conclusions

The use of trans-sacral implants in S1 requires meticulous preoperative planning to avoid injury of neurovascular structures. S2 more consistently offers space for trans-sacral implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrich S, Haastert B, Neuhaus E, Neidert K, Arend W, Ohmann C, Grebe J, Vogt A, Jungbluth P, Rösler G, Windolf J, Icks A (2015) Epidemiology of pelvic fractures in germany: considerably high incidence rates among older people. PLoS ONE 10:e0139078. https://doi.org/10.1371/journal.pone.0139078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kannus P, Parkkari J, Niemi S, Sievänen H (2015) Low-trauma pelvic fractures in elderly finns in 1970–2013. Calcif Tissue Int 97:577–580. https://doi.org/10.1007/s00223-015-0056-8

    Article  CAS  PubMed  Google Scholar 

  3. Rommens PM, Wagner D, Hofmann A (2017) Fragility fractures of the pelvis. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.16.00057

    Article  PubMed  Google Scholar 

  4. Routt ML Jr, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: early complications of the percutaneous technique. J Orthop Trauma 11:584–589

    Article  Google Scholar 

  5. Reuther G, Röhner U, Will T, Dehne I, Petereit U (2014) CT-guided screw fixation of vertical sacral fractures in local anaesthesia using a standard CT. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 186:1134–1139. https://doi.org/10.1055/s-0034-1366605

    Article  CAS  Google Scholar 

  6. Eckardt H, Egger A, Hasler RM, Zech CJ, Vach W, Suhm N, Morgenstern M, Saxer F (2017) Good functional outcome in patients suffering fragility fractures of the pelvis treated with percutaneous screw stabilisation: assessment of complications and factors influencing failure. Injury 48:2717–2723. https://doi.org/10.1016/j.injury.2017.11.002

    Article  PubMed  Google Scholar 

  7. Wagner D, Ossendorf C, Gruszka D, Hofmann A, Rommens PM (2015) Fragility fractures of the sacrum: how to identify and when to treat surgically? Eur J Trauma Emerg Surg Off Publ Eur Trauma Soc 41:349–362. https://doi.org/10.1007/s00068-015-0530-z

    Article  CAS  Google Scholar 

  8. Kim J-W, Oh C-W, Oh J-K, Kyung H-S, Park K-H, Yoon S-D, Yoon S-H (2016) The incidence of and factors affecting iliosacral screw loosening in pelvic ring injury. Arch Orthop Trauma Surg 136:921–927. https://doi.org/10.1007/s00402-016-2471-3

    Article  PubMed  Google Scholar 

  9. Mehling I, Hessmann MH, Rommens PM (2012) Stabilization of fatigue fractures of the dorsal pelvis with a trans-sacral bar. Operative technique and outcome. Injury 43:446–451. https://doi.org/10.1016/j.injury.2011.08.005

    Article  PubMed  Google Scholar 

  10. Rommens PM, Wagner D, Hofmann A (2012) Surgical management of osteoporotic pelvic fractures: a new challenge. Eur J Trauma Emerg Surg Off Publ Eur Trauma Soc 38:499–509. https://doi.org/10.1007/s00068-012-0224-8

    Article  CAS  Google Scholar 

  11. Balling H (2019) Additional sacroplasty does not improve clinical outcome in minimally invasive navigation-assisted screw fixation procedures for nondisplaced insufficiency fractures of the sacrum. Spine (Phila Pa 1976) 44(8):534–542. https://doi.org/10.1097/BRS.0000000000002899

    Article  Google Scholar 

  12. Wagner D, Hofmann A, Kamer L, Sawaguchi T, Richards RG, Noser H, Gruszka D, Rommens PM (2018) Fragility fractures of the sacrum occur in elderly patients with severe loss of sacral bone mass. Arch Orthop Trauma Surg 138:971–977. https://doi.org/10.1007/s00402-018-2938-5

    Article  PubMed  Google Scholar 

  13. Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Rommens PM (2016) Sacral bone mass distribution assessed by averaged three-dimensional CT models: implications for pathogenesis and treatment of fragility fractures of the sacrum. J Bone Jt Surg Am 98:584–590. https://doi.org/10.2106/JBJS.15.00726

    Article  Google Scholar 

  14. Lattauschke A, Klauke F, Ullrich BW, Hofmann GO, Mendel T (2017) Course of operative treatment of a sacral insufficiency fracture: successful or serious treatment? Unfallchirurg 120:890–895. https://doi.org/10.1007/s00113-017-0403-5

    Article  CAS  PubMed  Google Scholar 

  15. Ricci P-L, Maas S, Kelm J, Gerich T (2018) Finite element analysis of the pelvis including gait muscle forces: an investigation into the effect of rami fractures on load transmission. J Exp Orthop. https://doi.org/10.1186/s40634-018-0151-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Li J, Wang D, Liu Y, Tan J, Zhang S (2012) Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model. Injury 43:490–494. https://doi.org/10.1016/j.injury.2011.12.023

    Article  PubMed  Google Scholar 

  17. Tabaie SA, Bledsoe JG, Moed BR (2013) Biomechanical comparison of standard iliosacral screw fixation to transsacral locked screw fixation in a type C zone II pelvic fracture model. J Orthop Trauma 27:521–526. https://doi.org/10.1097/BOT.0b013e3182781102

    Article  PubMed  Google Scholar 

  18. Heydemann J, Hartline B, Gibson ME, Ambrose CG, Munz JW, Galpin M, Achor TS, Gary JL (2016) Do transsacral–transiliac screws across uninjured sacroiliac joints affect pain and functional outcomes in trauma patients? Clin Orthop Relat Res 474:1417–1421. https://doi.org/10.1007/s11999-015-4596-z

    Article  PubMed  Google Scholar 

  19. Höch A, Pieroh P, Henkelmann R, Josten C, Böhme J (2017) In-screw polymethylmethacrylate-augmented sacroiliac screw for the treatment of fragility fractures of the pelvis: a prospective, observational study with 1-year follow-up. BMC Surg 17:132. https://doi.org/10.1186/s12893-017-0330-y

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wagner D, Kamer L, Rommens PM, Sawaguchi T, Richards RG, Noser H (2014) 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans-sacral corridors. J Orthop Res Off Publ Orthop Res Soc 32:1543–1548. https://doi.org/10.1002/jor.22667

    Article  Google Scholar 

  21. Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Hofmann A, Rommens PM (2017) Morphometry of the sacrum and its implication on trans-sacral corridors using a CT data-based 3D statistical model. Spine J Off J N Am Spine Soc 17:1141–1147. https://doi.org/10.1016/j.spinee.2017.03.023

    Article  Google Scholar 

  22. Day CS, Prayson MJ, Shuler TE, Towers J, Gruen GS (2000) Transsacral versus modified pelvic landmarks for percutaneous iliosacral screw placement—a computed tomographic analysis and cadaveric study. Am J Orthop Belle Mead NJ 29:16–21

    CAS  PubMed  Google Scholar 

  23. Hasenboehler EA, Stahel PF, Williams A, Smith WR, Newman JT, Symonds DL, Morgan SJ (2011) Prevalence of sacral dysmorphia in a prospective trauma population: Implications for a “safe” surgical corridor for sacro-iliac screw placement. Patient Saf Surg 5:8. https://doi.org/10.1186/1754-9493-5-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gras F, Hillmann S, Rausch S, Klos K, Hofmann GO, Marintschev I (2015) Biomorphometric analysis of ilio-sacro-iliacal corridors for an intra-osseous implant to fix posterior pelvic ring fractures. J Orthop Res Off Publ Orthop Res Soc 33:254–260. https://doi.org/10.1002/jor.22754

    Article  Google Scholar 

  25. Lee JJ, Rosenbaum SL, Martusiewicz A, Holcombe SA, Wang SC, Goulet JA (2015) Transsacral screw safe zone size by sacral segmentation variations. J Orthop Res Off Publ Orthop Res Soc 33:277–282. https://doi.org/10.1002/jor.22739

    Article  Google Scholar 

  26. Kaiser SP, Gardner MJ, Liu J, Routt MLC, Morshed S (2014) Anatomic determinants of sacral dysmorphism and implications for safe iliosacral screw placement. J Bone Jt Surg Am 96:e120. https://doi.org/10.2106/JBJS.M.00895

    Article  Google Scholar 

  27. Mendel T, Noser H, Kuervers J, Goehre F, Hofmann GO, Radetzki F (2013) The influence of sacral morphology on the existence of secure S1 and S2 transverse bone corridors for iliosacroiliac screw fixation. Injury 44:1773–1779. https://doi.org/10.1016/j.injury.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  28. Radetzki F, Wohlrab D, Goehre F, Noser H, Delank KS, Mendel T (2014) Anatomical conditions of the posterior pelvic ring regarding bisegmental transverse sacroiliac screw fixation: a 3D morphometric study of 125 pelvic CT datasets. Arch Orthop Trauma Surg 134:1115–1120. https://doi.org/10.1007/s00402-014-2022-8

    Article  PubMed  Google Scholar 

  29. Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Uesugi M, Ossendorf C, Rommens PM (2017) Critical dimensions of trans-sacral corridors assessed by 3D CT models. Relevance for implant positioning in fractures of the sacrum. J Orthop Res Off Publ Orthop Res Soc 35:2577–2584. https://doi.org/10.1002/jor.23554

    Article  Google Scholar 

  30. Conflitti JM, Graves ML, Chip Routt ML Jr (2010) Radiographic quantification and analysis of dysmorphic upper sacral osseous anatomy and associated iliosacral screw insertions. J Orthop Trauma 24:630–636. https://doi.org/10.1097/BOT.0b013e3181dc50cd

    Article  PubMed  Google Scholar 

  31. Eastman JG, Adams MR, Frisoli K, Chip Routt ML (2018) Is S3 a viable osseous fixation pathway. J Orthop Trauma 32:93–99. https://doi.org/10.1097/BOT.0000000000001036

    Article  PubMed  Google Scholar 

  32. Zhang L, Peng Y, Du C, Tang P (2014) Biomechanical study of four kinds of percutaneous screw fixation in two types of unilateral sacroiliac joint dislocation: a finite element analysis. Injury 45:2055–2059. https://doi.org/10.1016/j.injury.2014.10.052

    Article  PubMed  Google Scholar 

  33. Jazini E, Klocke N, Tannous O, Johal HS, Hao J, Salloum K, Gelb DE, Nascone JW, Belin E, Hoshino CM, Hussain M, OʼToole RV, Bucklen B, Ludwig SC (2017) Does lumbopelvic fixation add stability? A cadaveric biomechanical analysis of an unstable pelvic fracture model. J Orthop Trauma 31:37–46. https://doi.org/10.1097/BOT.0000000000000703

    Article  PubMed  Google Scholar 

  34. Gras F, Gottschling H, Schröder M, Marintschev I, Hofmann GO, Burgkart R (2016) Transsacral osseous corridor anatomy is more amenable to screw insertion in males: a biomorphometric analysis of 280 pelves. Clin Orthop 474:2304–2311. https://doi.org/10.1007/s11999-016-4954-5

    Article  PubMed  Google Scholar 

  35. Routt ML Jr, Simonian PT, Agnew SG, Mann FA (1996) Radiographic recognition of the sacral alar slope for optimal placement of iliosacral screws: a cadaveric and clinical study. J Orthop Trauma 10:171–177

    Article  Google Scholar 

  36. Miller AN, Routt MLC Jr (2012) Variations in sacral morphology and implications for iliosacral screw fixation. J Am Acad Orthop Surg 20:8–16. https://doi.org/10.5435/JAAOS-20-01-008

    Article  PubMed  Google Scholar 

  37. Mendel T, Noser H, Wohlrab D, Stock K, Radetzki F (2011) The lateral sacral triangle—a decision support for secure transverse sacroiliac screw insertion. Injury 42:1164–1170

    Article  CAS  Google Scholar 

  38. Kim JW, Quispe JC, Hao J, Herbert B, Hake M, Mauffrey C (2016) Fluoroscopic views for a more accurate placement of iliosacral screws: an experimental study. J Orthop Trauma 30:34–40. https://doi.org/10.1097/BOT.0000000000000426

    Article  PubMed  Google Scholar 

  39. Graves ML, Routt MLC Jr (2011) Iliosacral screw placement: are uniplanar changes realistic based on standard fluoroscopic imaging? J Trauma 71:204–208. https://doi.org/10.1097/TA.0b013e31821e842a (discussion 208)

    Article  PubMed  Google Scholar 

  40. Gardner MJ, Morshed S, Nork SE, Ricci WM, Chip Routt ML Jr (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24:622–629. https://doi.org/10.1097/BOT.0b013e3181cf0404

    Article  PubMed  Google Scholar 

  41. Carlson DA, Scheid DK, Maar DC, Baele JR, Kaehr DM (2000) Safe placement of S1 and S2 iliosacral screws: the “vestibule” concept. J Orthop Trauma 14:264–269

    Article  CAS  Google Scholar 

  42. Hammer N, Steinke H, Lingslebe U, Bechmann I, Josten C, Slowik V, Böhme J (2013) Ligamentous influence in pelvic load distribution. Spine J Off J N Am Spine Soc 13:1321–1330. https://doi.org/10.1016/j.spinee.2013.03.050

    Article  Google Scholar 

  43. Linstrom NJ, Heiserman JE, Kortman KE, Crawford NR, Baek S, Anderson RL, Pitt AM, Karis JP, Ross JS, Lekovic GP, Dean BL (2009) Anatomical and biomechanical analyses of the unique and consistent locations of sacral insufficiency fractures. Spine 34:309–315. https://doi.org/10.1097/BRS.0b013e318191ea01

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wong-Chung J, Jamsheer N, Nabar U, Aradi AJ (1997) Two parallel linear densities on lateral radiographs of the lumbosacral spine: neither iliopectineal lines nor basis ossis sacri. Br J Radiol 70:58–61

    Article  CAS  Google Scholar 

  45. Day AC, Stott PM, Boden RA (2007) The accuracy of computer-assisted percutaneous iliosacral screw placement. Clin Orthop 463:179–186

    PubMed  Google Scholar 

  46. Takao M, Hamada H, Sakai T, Sugano N (2019) Factors influencing the accuracy of iliosacral screw insertion using 3D fluoroscopic navigation. Arch Orthop Trauma Surg 139(2):189–195. https://doi.org/10.1007/s00402-018-3055-1

    Article  PubMed  Google Scholar 

  47. Zwingmann J, Hauschild O, Bode G, Südkamp NP, Schmal H (2013) Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures: a systematic review and meta-analysis. Arch Orthop Trauma Surg 133:1257–1265. https://doi.org/10.1007/s00402-013-1788-4

    Article  PubMed  Google Scholar 

  48. Teo AQA, Yik JH, Jin Keat SN, Murphy DP, O’Neill GK (2018) Accuracy of sacroiliac screw placement with and without intraoperative navigation and clinical application of the sacral dysmorphism score. Injury. https://doi.org/10.1016/j.injury.2018.05.027

    Article  PubMed  Google Scholar 

  49. Richter PH, Gebhard F, Dehner C, Scola A (2016) Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 47:402–407. https://doi.org/10.1016/j.injury.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  50. Matityahu A, Kahler D, Krettek C, Stöckle U, Grutzner PA (2014) Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study. J Orthop Trauma 28:4

    Article  Google Scholar 

  51. Morshed S, Choo K, Kandemir U, Kaiser SP (2015) Internal fixation of posterior pelvic ring injuries using iliosacral screws in the dysmorphic upper sacrum. JBJS Essent Surg Tech 5:e3. https://doi.org/10.2106/JBJS.ST.N.00006

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bastian JD, Jost J, Cullmann JL, Aghayev E, Keel MJB, Benneker LM (2015) Percutaneous screw fixation of the iliosacral joint: optimal screw pathways are frequently not completely intraosseous. Injury 46:2003–2009. https://doi.org/10.1016/j.injury.2015.06.044

    Article  CAS  PubMed  Google Scholar 

  53. Mendel T, Appelt K, Kuhn P, Suhm N (2008) Bony sacroiliac corridor. A virtual volume model for the accurate insertion of transarticular screws. Unfallchirurg 111:19–26. https://doi.org/10.1007/s00113-007-1386-4

    Article  CAS  PubMed  Google Scholar 

  54. Reilly MC, Bono CM, Litkouhi B, Sirkin M, Behrens FF (2003) The effect of sacral fracture malreduction on the safe placement of iliosacral screws. J Orthop Trauma 17:88–94

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Heldstab for his technical assistance. Some data based on previous research, which has been co-funded by the TK System of the AO Foundation, Davos, Switzerland, and by Depuy Synthes company, Zuchwil, Switzerland. We would like to thank Depuy Synthes to provide us with a virtual screw template.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wagner.

Ethics declarations

Conflict of interest

Author Wagner, Author Kamer, Author Sawaguchi, Author Noser, Author Uesugi, Author Baranowski, Author Gruszka, and Author Rommens declare that they have no conflict of interest.

Ethical approval

The database of the AO Research Institute Davos is registered at the “Eidgenössischer Öffentlichkeits- und Datenschutzbeauftragter” (EDÖP, Bern, Switzerland, No. 200700006). All patients agreed to anonymous use of their CT data for research purposes. For the Japanese data, ethical approval was given by the institutional review board of the Tsukuba Medical Center (No. 2012-013).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, D., Kamer, L., Sawaguchi, T. et al. Space available for trans-sacral implants to treat fractures of the pelvis assessed by virtual implant positioning. Arch Orthop Trauma Surg 139, 1385–1391 (2019). https://doi.org/10.1007/s00402-019-03204-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-019-03204-9

Keywords

Navigation