Skip to main content
Log in

Superior biomechanical properties and tying time with the modified Prusik knot and Wittstein suture loop to the Krackow stitch

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

A Correction to this article was published on 20 November 2017

This article has been updated

Abstract

Introduction

The purposes of the study were to compare (1) the biomechanical properties of the modified Prusik knot, Wittstein suture loop, and Krackow stitch fixation, and (2) the knot tying times for tendon graft fixation among the Krackow stitch, modified rolling hitch, modified Prusik knot, and Wittstein suture loop.

Materials and methods

First, 33 fresh-frozen porcine flexor profundus tendons were randomly divided into three groups of 11 specimens. The experimental procedure was designed to assess elongation of the suture-tendon construct across the modified Prusik knot, Wittstein suture loop, and the Krackow stitch. Multistranded nonabsorbable sutures were used. Each specimen was pre-tensioned to 100 N for three cycles, cyclically loaded to 200 N for 200 cycles, and finally loaded to failure. Elongation, load to failure, and failure mode of each specimen were recorded. Second, the knot tying times for modified rolling hitch, modified Prusik knot, Wittstein suture loop, and Krackow stitch were investigated. The measurements were taken on three different occasions to account for intraobserver repeatability and interobserver reproducibility.

Results

The elongation after cyclic loading of the modified Prusik knot (22 ± 6%), Wittstein suture loop (25 ± 2%) were significantly smaller than the Krackow stitch (31 ± 5%) (p = 0.001 and 0.003, respectively). The failure loads of three groups were not significantly from one another. Meanwhile, the Krackow stitch group (80.9 ± 16.7 s) had significantly longer average procedure time than the modified rolling hitch group (9.2. ± 1.9 s) (p < 0.001), modified Prusik knot group (9.1 ± 1.8 s) (p < 0.001), and Wittstein suture loop group (9.0 ± 2.2 s) (p < 0.001).

Conclusions

Compared to the Krackow stitch, the modified Prusik knot and Wittstein suture loop had less elongation after cyclic loading and similar ultimate load to failure in this porcine in vitro biomechanical study. Shorter knot tying times were required to complete the modified rolling hitch, modified Prusik knot, and Wittstein suture loop than the Krackow stitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 20 November 2017

    Due to an error during the production process, the legend

References

  1. Becker R, Schroder M, Ropke M, Starke C, Nebelung W (1999) Structural properties of sutures used in anchoring multistranded hamstrings in anterior cruciate ligament reconstruction: a biomechanical study. Arthroscopy 15(3):297–300. doi:10.1016/S0749-8063(99)70038-1

    Article  CAS  PubMed  Google Scholar 

  2. Deramo DM, White KL, Parks BG, Hinton RY (2008) Krackow locking stitch versus nonlocking premanufactured loop stitch for soft-tissue fixation: a biomechanical study. Arthroscopy 24(5):599–603. doi:10.1016/j.arthro.2007.11.020

    Article  PubMed  Google Scholar 

  3. Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br 87(5):593–603. doi:10.1302/0301-620X.87B5.15803

    Article  CAS  Google Scholar 

  4. McKeon BP, Heming JF, Fulkerson J, Langeland R (2006) The Krackow stitch: a biomechanical evaluation of changing the number of loops versus the number of sutures. Arthroscopy 22(1):33–37. doi:10.1016/j.arthro.2005.10.008

    Article  PubMed  Google Scholar 

  5. Su WR, Chu CH, Lin CL, Lin CJ, Jou IM, Chang CW (2012) The modified finger-trap suture technique: a biomechanical comparison of a novel suture technique for graft fixation. Arthroscopy 28(5):702–710. doi:10.1016/j.arthro.2011.10.014

    Article  PubMed  Google Scholar 

  6. Krackow KA, Thomas SC, Jones LC (1986) A new stitch for ligament-tendon fixation. Brief note. J Bone Jt Surg Am 68(5):764–766

    Article  CAS  Google Scholar 

  7. Sakaguchi K, Tachibana Y, Oda H (2012) Biomechanical properties of porcine flexor tendon fixation with varying throws and stitch methods. Am J Sports Med 40(7):1641–1645. doi:10.1177/0363546512450406

    Article  PubMed  Google Scholar 

  8. Hong CK, Chiang CH, Huang YH, Su WR, Lo SP (2017) Using the modified rolling hitch for split peroneus brevis tendon transfer in lateral ankle stabilization. Foot Ankle Surg. doi:10.1016/j.fas.2017.04.002 (article in press)

    PubMed  Google Scholar 

  9. Highcock AJ, Banim R (2014) The rolling hitch surgical knot: an alternative to the Krackow whipstitch for hamstring graft in anterior cruciate ligament reconstruction surgery. Tech Orthop 29:175–178

    Article  Google Scholar 

  10. Hong CK, Chang CH, Chiang CH, Jou IM, Su WR (2014) Hamstring graft preparation using a modified rolling hitch technique. Arthrosc Tech 3(3):e321–e324. doi:10.1016/j.eats.2014.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krappinger D, Kralinger FS, El Attal R, Hackl W, Haid C (2007) Modified Prusik knot versus whipstitch technique for soft tissue fixation in anterior cruciate ligament reconstruction: a biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 15(4):418–423. doi:10.1007/s00167-006-0176-9

    Article  PubMed  Google Scholar 

  12. Wittstein J, Wilson B, Garrett WE, Toth A (2011) Hamstring graft preparation using a needleless suture loop. J Surg Orthop Adv 20:142–144

    PubMed  Google Scholar 

  13. Camarda L, Giambartino S, Lauria M, Saporito M, Triolo V, D’Arienzo M (2016) Surgical time for graft preparation using different suture techniques. Mltj-Muscle Ligament 6(2):236–240. doi:10.11138/mltj/2016.6.2.236

    Google Scholar 

  14. Camarda L, Pitarresi G, Fazzari F, Tumino D, D’Arienzo M (2016) Biomechanical comparison between the modified rolling-hitch and the modified finger-trap suture techniques. Arch Orthop Traum Su 136(11):1595–1600. doi:10.1007/s00402-016-2551-4

    Article  Google Scholar 

  15. Hong CK, Kuo TH, Yeh ML, Jou IM, Lin CL, Su WR (2017) Do needleless knots have similar strength as the Krackow suture? An in vitro porcine tendon study. Clin Orthop Relat Res 475(2):552–557. doi:10.1007/s11999-016-5153-0

    Article  PubMed  Google Scholar 

  16. Hong CK, Yeh ML, Jou IM, Lin CL, Chang CH, Su WR (2015) Evaluation of 3 needleless grasping suture techniques for soft-tissue graft fixation: a porcine biomechanical study. Arthroscopy 31(6):1151–1155. doi:10.1016/j.arthro.2015.01.011

    Article  PubMed  Google Scholar 

  17. Brand JC Jr (2017) CORR Insights(R): do needleless knots have similar strength as the krackow suture? An in vitro porcine tendon study. Clin Orthop Relat Res 475(2):558–559. doi:10.1007/s11999-016-5191-7

    Article  PubMed  Google Scholar 

  18. Hahn JM, Inceoglu S, Wongworawat MD (2014) Biomechanical comparison of Krackow locking stitch versus nonlocking loop stitch with varying number of throws. Am J Sports Med 42(12):3003–3008. doi:10.1177/0363546514550989

    Article  PubMed  Google Scholar 

  19. Hong CK, Lin CL, Chang CH, Jou IM, Su WR (2014) Effect of the number of suture throws on the biomechanical characteristics of the suture-tendon construct. Arthroscopy 30(12):1609–1615. doi:10.1016/j.arthro.2014.06.029

    Article  PubMed  Google Scholar 

  20. White KL, Camire LM, Parks BG, Corey WS, Hinton RY (2010) Krackow locking stitch versus locking premanufactured loop stitch for soft-tissue fixation: a biomechanical study. Arthroscopy 26(12):1662–1666. doi:10.1016/j.arthro.2010.05.013

    Article  PubMed  Google Scholar 

  21. Shrout PE, Fleiss JL (1979) Intraclass correlations—uses in assessing rater reliability. Psychol Bull 86(2):420–428. doi:10.1037//0033-2909.86.2.420

    Article  CAS  PubMed  Google Scholar 

  22. Domnick C, Wieskotter B, Raschke MJ, Schulze M, Kronenberg D, Wefelmeier M, Langer MF, Herbort M (2016) Evaluation of biomechanical properties: are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies? Arch Orthop Trauma Surg 136(10):1465–1471. doi:10.1007/s00402-016-2529-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shing-Yun Chang BS, MSc (Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan) and Ting-Hsuan Kuo (Department of Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan) for assistance with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ren Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00402-017-2841-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, CK., Lin, CL., Yang, JM. et al. Superior biomechanical properties and tying time with the modified Prusik knot and Wittstein suture loop to the Krackow stitch. Arch Orthop Trauma Surg 138, 237–244 (2018). https://doi.org/10.1007/s00402-017-2830-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2830-8

Keywords

Navigation