Skip to main content
Log in

Posterior cruciate-substituting total knee replacement recovers the flexion arc faster in the early postoperative period in knees with high varus deformity: a prospective randomized study

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Posterior cruciate retention (CR) and substitution (PS) has been controversial in knee replacement surgery. Satisfactory medium and long-term results have been reported in knees with and without deformity but there are limited studies about early functional comparison in terms of recovery of flexion arc, stair activity, walking ability and straight leg raising, especially, in early postoperative period in knees with deformity. Therefore, we aimed to compare the flexion arc in CR and PS knees in postoperative first year including early postoperative days prospectively.

Methods

Consecutive patients with a deformity of >10° were included and allocated to CR and PS groups randomly. KSS and Feller-patella scores were recorded both preoperatively and postoperatively (1st, 2nd, 3rd and 12th months). Flexion and extension were measured both preoperatively and postoperatively (1st, 2nd, 3rd day and discharge day as well as 1st, 2nd, 3rd and 12th months). Visual analog scale (VAS) was recorded postoperatively at the 1st, 2nd, 3rd and discharge day and at 1st, 2nd, 3rd and 12th months. The walking ability, stair activity and straight leg raising were recorded. Patients were also examined at the last visit with minimum 7-year follow-up with KSS, Feller-patella and VAS scores. Their mean flexion arcs were measured and recorded.

Results

There were 61 TKR evaluated. KSS knee and function scores at the 3rd month and KSS Knee Score at 1st year were superior in PS knees (p = 0.029, p = 0.046, p = 0.026). Flexion arc was found larger on day 1, 2, 3 and discharge day, and at 1st, 2nd, 3rd and 12th month in PS group (p = 0.048, p = 0.002, p = 0.027, p = 0.043, p = 0.014, p = 0.003, p = 0.002, p = 0.018). Walking and stair activity showed no difference but straight leg raising was better in CR knees (p = 0.02). Mean flexion arc was larger in PS knees at the last visit after 7 years (119.0° ± 7.5° in PS and 113.8° ± 8.7° in CR, p = 0.02). There was no revision required in that time interval. The other parameters were similar between groups.

Conclusions

PS knees gained active flexion arc faster and larger. But straight leg raising activity recovered early in CR knees. Both types of prosthesis produced satisfactory outcome. PS and CR TKRs can be performed with the same performance in osteoarthritic knees even with high varus deformity.

Level of evidence

Prospective Randomized Controlled Trial, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pereira DS, Jaffe FF, Ortiguera C (1998) Posterior cruciate ligament-sparing versus posterior cruciate ligament-sacrificing arthroplasty. Functional results using the same prosthesis. J Arthroplast 13(2):138–144

    Article  CAS  Google Scholar 

  2. Wang CJ, Wang JW, Chen HS (2004) Comparing cruciate-retaining total knee arthroplasty and cruciate-substituting total knee arthroplasty: a prospective clinical study. Chang Gung Med J 27(8):578–585

    PubMed  Google Scholar 

  3. Sorger JI, Federle D, Kirk PG, Grood E, Cochran J, Levy M (1997) The posterior cruciate ligament in total knee arthroplasty. J Arthroplast 12(8):869–879

    Article  CAS  Google Scholar 

  4. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D (2001) Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res 392:208–212

    Article  PubMed  Google Scholar 

  5. Goodfellow J, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Jt Surg Br 60-B(3):358–369

    CAS  Google Scholar 

  6. Malkani AL, Rand JA, Bryan RS, Wallrichs SL (1995) Total knee arthroplasty with the kinematic condylar prosthesis. A ten-year follow-up study. J Bone Jt Surg Am 77(3):423–431

    CAS  Google Scholar 

  7. Fontanesi G, Rotini R, Pignedoli P, Giancecchi F (1991) Retention of the posterior cruciate ligament in total knee arthroplasty. Ital J Orthop Traumatol 17(1):65–71

    CAS  PubMed  Google Scholar 

  8. Scott RD, Volatile TB (1986) Twelve years’ experience with posterior cruciate-retaining total knee arthroplasty. Clin Orthop Relat Res 205:100–107

    PubMed  Google Scholar 

  9. Mähringer-Kunz A, Efe T, Fuchs-Winkelmann S, Schüttler KF, Paletta JR, Heyse TJ (2015) Bleeding in TKA: posterior stabilized vs. cruciate retaining. Arch Orthop Trauma Surg 135(6):867–870. doi:10.1007/s00402-015-2209-7 Epub 2015 Apr 28

    Article  PubMed  Google Scholar 

  10. Becher C, Heyse TJ, Kron N, Ostermeier S, Hurschler C, Schofer MD, Fuchs-Winkelmann S, Tibesku CO (2009) Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surg Sports Traumatol Arthrosc 17(10):1159–1165. doi:10.1007/s00167-009-0768-2 (Epub 2009 Mar 21)

    Article  PubMed  Google Scholar 

  11. Insall JN, Lachiewicz PF, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two to four-year clinical experience. J Bone Jt Surg Am 64(9):1317–1323

    CAS  Google Scholar 

  12. Lombardi AV Jr, Berend KR (2006) Posterior cruciate ligament-retaining, posterior stabilized, and varus/valgus posterior stabilized constrained articulations in total knee arthroplasty. Instr Course Lect 55:419–427

    PubMed  Google Scholar 

  13. Andriacchi TP, Galante JO (1988) Retention of the posterior cruciate in total knee arthroplasty. J Arthroplast 3 Suppl:S13–S19

    Article  CAS  Google Scholar 

  14. Dorr LD, Ochsner JL, Gronley J, Perry J (1988) Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Clin Orthop Relat Res 236:36–43

    PubMed  Google Scholar 

  15. Kelman GJ, Biden EN, Wyatt MP, Ritter MA, Colwell CW Jr (1989) Gait laboratory analysis of a posterior cruciate-sparing total knee arthroplasty in stair ascent and descent. Clin Orthop Relat Res 248:21–25

    PubMed  Google Scholar 

  16. van den Boom LG, Halbertsma JP, van Raaij JJ, Brouwer RW, Bulstra SK, van den Akker-Scheek I (2014) No difference in gait between posterior cruciate retention and the posterior stabilized design after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3135–3141

    Article  PubMed  Google Scholar 

  17. Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Jt Surg Am 93(22):2072–2078

    Article  Google Scholar 

  18. Chaudhary R, Beaupré LA, Johnston DW (2008) Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses. A randomized clinical trial. J Bone Jt Surg Am 90(12):2579–2586

    Article  CAS  Google Scholar 

  19. Catani F, Leardini A, Ensini A, Cucca G, Bragonzoni L, Toksvig-Larsen S (2004) Giannini S (2004) The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate-retaining versus posterior-stabilized design. J Arthroplast 19(6):775–782

    Article  Google Scholar 

  20. Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplast 19(3):349–353

    Article  Google Scholar 

  21. Straw R, Kulkarni S, Attfield S, Wilton TJ (2003) Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance? J Bone Jt Surg Br 85(5):671–674

    CAS  Google Scholar 

  22. Misra AN, Hussain MR, Fiddian NJ, Newton G (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Jt Surg Br 85(3):389–392

    Article  CAS  Google Scholar 

  23. Shoji H, Wolf A, Packard S, Yoshino S (1994) Cruciate retained and excised total knee arthroplasty. A comparative study in patients with bilateral total knee arthroplasty. Clin Orthop Relat Res 305:218–222

    Article  PubMed  Google Scholar 

  24. Tanzer M, Smith K, Burnett S (2002) Posterior-stabilized versus cruciate-retaining total knee arthroplasty: balancing the gap. J Arthroplast 17(7):813–819

    Article  Google Scholar 

  25. Zhang Z, Zhu W, Zhang W (2015) High-flexion posterior-substituting versus cruciate-retaining prosthesis in total knee arthroplasty: functional outcome, range of motion and complication comparison. Arch Orthop Trauma Surg 135(1):119–124. doi:10.1007/s00402-014-2107-4 (Epub 2014 Nov 12)

    Article  PubMed  Google Scholar 

  26. van den Boom LG, Brouwer RW, van den Akker-Scheek I, Bulstra SK, van Raaij JJ (2009) Retention of the posterior cruciate ligament versus the posterior stabilized design in total knee arthroplasty: a prospective randomized controlled clinical trial. BMC Musculoskelet Disord 10:119

    Article  PubMed  PubMed Central  Google Scholar 

  27. Keblish PA, Varma AK, Greenwald AS (1994) Patellar resurfacing or retention in total knee arthroplasty. J Bone Jt Surg 76B:930–937

    Google Scholar 

  28. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the knee society clinical rating system. Clin Orthop 248:13–14

    PubMed  Google Scholar 

  29. Feller JA, Bartlett RJ, Lang DM (1996) Patellar resurfacing versus retention in total knee arthroplasty. J Bone Jt Surg. 78B:226–228

    Google Scholar 

  30. Gogia PP, Braatz JH, Rose SJ, Norton BJ (1987) Reliability and validity of goniometric measurements at the knee. Phys Ther 67(2):192–195

    CAS  PubMed  Google Scholar 

  31. Rothstein JM, Miller PJ, Roettger RF (1983) Goniometric reliability in a clinical setting. Elbow and knee measurements. Phys Ther 63(10):1611–1615

    CAS  PubMed  Google Scholar 

  32. Clarkson HM (2000) Muskuloskeletal assessment: joint range of motion and manual muscle strength, 2nd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  33. McCormack HM, Horne DJ, Sheather S (1988) Clinical applications of visual analogue scales: a critical review. Psychol Med 18(4):1007–1019

    Article  CAS  PubMed  Google Scholar 

  34. Cho HJ, Morey V, Kang JY, Kim KW, Kim TK (2015) Prevalence and risk factors of spine, shoulder, hand, hip, and knee osteoarthritis in community-dwelling Koreans older than age 65 years. Clin Orthop Relat Res 473(10):3307–3314. doi:10.1007/s11999-015-4450-3 (Epub 2015 Jul 11)

    Article  PubMed  Google Scholar 

  35. Pereira D, Severo M, Ramos E, Branco J, Santos RA, Costa L, Lucas R, Barros H (2015) Potential role of age, sex, body mass index and pain to identify patients with knee osteoarthritis. Int J Rheum Dis. doi:10.1111/1756-185X.12611 (Epub ahead of print)

    PubMed  Google Scholar 

  36. Luo SX, Zhao JM, Su W, Li XF, Dong GF (2012) Posterior cruciate substituting versus posterior cruciate retaining total knee arthroplasty prostheses: a meta-analysis. Knee 19(4):246–252

    Article  PubMed  Google Scholar 

  37. Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG (2013) Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev 11(10):CD004803. doi:10.1002/14651858.CD004803.pub3 (PubMed PMID: 24114343)

    Google Scholar 

  38. Kolisek FR, McGrath MS, Marker DR, Jessup N, Seyler TM, Mont MA, Lowry Barnes C (2009) Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. Iowa Orthop J 29:23–27

    PubMed  PubMed Central  Google Scholar 

  39. Harato K, Bourne RB, Victor J, Snyder M, Hart J, Ries MD (2008) Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee 15(3):217–221

    Article  PubMed  Google Scholar 

  40. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Jt Surg Br 87(5):646–655

    Article  CAS  Google Scholar 

  41. Heyse TJ, Becher C, Kron N, Ostermeier S, Hurschler C, Schofer MD, Fuchs-Winkelmann S, Tibesku CO (2010) Quadriceps force in relation of intrinsic anteroposterior stability of TKA design. Arch Orthop Trauma Surg 130(1):1–9. doi:10.1007/s00402-009-0927-4

    Article  PubMed  Google Scholar 

  42. Andriacchi TP, Galante JO, Fermier RW (1988) The influence of total knee-replacement design on walking and stair-climbing. J Bone Jt Surg 64(9):1328–1335

    Google Scholar 

  43. Freeman MA, Railton GT (1988) Should the posterior cruciate ligament be retained or resected in condylar nonmeniscal knee arthroplasty? The case for resection. J Arthroplast 3 Suppl:S3–S12

    Article  CAS  Google Scholar 

  44. Oztürk A, Bilgen S, Atici T, Ozer O, Bilgen OF (2006) The evaluation of patients undergoing total knee arthroplasty with or without patellar resurfacing. Acta Orthop Traumatol Turc 40(1):29–37

    PubMed  Google Scholar 

  45. Kim YH, Choi Y, Kwon OR, Kim JS (2009) Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Jt Surg Am 91(4):753–760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpaslan Öztürk.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, A., Akalın, Y., Çevik, N. et al. Posterior cruciate-substituting total knee replacement recovers the flexion arc faster in the early postoperative period in knees with high varus deformity: a prospective randomized study. Arch Orthop Trauma Surg 136, 999–1006 (2016). https://doi.org/10.1007/s00402-016-2482-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2482-0

Keywords

Navigation