Skip to main content
Log in

Are porcine flexor digitorum profundus tendons suitable graft substitutes for human hamstring tendons in biomechanical in vitro-studies?

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Although a plenty of studies exist assessing the strength of ligamentous fixation techniques using porcine flexor digitorum profundus tendons as graft substitutes for human hamstring tendons, there is no biomechanical study comparing these two tendons. To interpret the results obtained with porcine flexor digitorum profundus tendons, knowledge of their biomechanical properties is essential. The purpose of this study was to compare the biomechanical properties of human hamstring tendons and porcine flexor digitorum profundus tendons.

Materials and methods

A total of six human hamstring tendons and six porcine flexor digitorum profundus tendons were analysed in this study. Quadruple-bundle human hamstring tendons and double-bundle porcine flexor digitorum profundus tendons with a diameter of 9 mm were used. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 50 N for 10 min following cyclic loading of 1500 cycles between 50 and 200 N at 0.5 Hz for measurement of elongation. Subsequently, ultimate failure load and failure mode analysis were performed with a ramp speed of 20 mm/min.

Results

Human hamstring tendons showed significantly higher maximum load to failure values compared to porcine flexor digitorum profundus tendons (1597 ± 179.6 N vs. 1109 ± 101.9 N; p = 0.035). Human hamstring tendons yielded significantly lower initial elongation during preload, but not during cyclical loading.

Conclusions

When porcine flexor digitorum profundus tendons are used as graft substitutes for human hamstring tendons in biomechanical studies, maximum load to failure is underestimated while elongation is comparable to that of human hamstring tendons. Transferring results of biomechanical studies into clinical practice, the lower maximum load to failure of porcine flexor digitorum profundus tendons needs to be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S (2004) Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 32:71–78

    Article  PubMed  Google Scholar 

  2. Becker R, Voigt D, Starke C, Heymann M, Wilson GA, Nebelung W (2001) Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surg Sports Traumatol Arthrosc 9:337–342

    Article  CAS  PubMed  Google Scholar 

  3. Beynnon BD, Amis AA (1998) In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S70–S76

    Article  PubMed  Google Scholar 

  4. Bollen S (2000) Epidemiology of knee injuries: diagnosis and triage. Br J Sports Med 34:227–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burnett QM, 2nd, Fowler PJ (1985) Reconstruction of the anterior cruciate ligament: historical overview. Orthop Clin North Am 16:143–157

  6. Conner CS, Perez BA, Morris RP, Buckner JW, Buford WL Jr, Ivey FM (2010) Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex vs. the anterior cortex. Arthroscopy 26:796–807

    Article  PubMed  Google Scholar 

  7. Feagin JA Jr, Lambert KL, Cunningham RR, Anderson LM, Riegel J, King PH, VanGenderen L (1987) Consideration of the anterior cruciate ligament injury in skiing. Clin Orthop Relat Res 216:13–18

    PubMed  Google Scholar 

  8. Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79:1556–1576

    CAS  PubMed  Google Scholar 

  9. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med 27:821–830

    CAS  PubMed  Google Scholar 

  10. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34:1512–1532

    Article  PubMed  Google Scholar 

  11. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150

    Article  CAS  PubMed  Google Scholar 

  12. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    CAS  PubMed  Google Scholar 

  13. Herrera A, Martinez F, Iglesias D, Cegonino J, Ibarz E, Gracia L (2010) Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study. BMC Musculoskelet Disord 11:139-2474-11-139

  14. Higano M, Tachibana Y, Sakaguchi K, Goto T, Oda H (2013) Effects of tunnel dilation and interference screw position on the biomechanical properties of tendon graft fixation for anterior cruciate ligament reconstruction. Arthroscopy 29:1804–1810

    Article  PubMed  Google Scholar 

  15. Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y (2005) Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy 21:970–978

    Article  PubMed  Google Scholar 

  16. Lee CH, Huang GS, Chao KH, Wu SS, Chen Q (2005) Differential pretensions of a flexor tendon graft for anterior cruciate ligament reconstruction: a biomechanical comparison in a porcine knee model. Arthroscopy 21:540–546

    Article  PubMed  Google Scholar 

  17. Lee JJ, Otarodifard K, Jun BJ, McGarry MH, Hatch GF 3rd, Lee TQ (2011) Is supplementary fixation necessary in anterior cruciate ligament reconstructions? Am J Sports Med 39:360–365

  18. Lenschow S, Schliemann B, Schulze M, Raschke M, Kosters C (2014) Comparison of outside-in and inside-out technique for tibial fixation of a soft-tissue graft in ACL reconstruction using the Shim technique. Arch Orthop Trauma Surg 134:1293–1299

    Article  CAS  PubMed  Google Scholar 

  19. Lenschow S, Schliemann B, Gestring J, Herbort M, Schulze M, Kosters C (2013) Medial patellofemoral ligament reconstruction: fixation strength of 5 different techniques for graft fixation at the patella. Arthroscopy 29:766–773

    Article  PubMed  Google Scholar 

  20. Lenschow S, Herbort M, Strasser A, Strobel M, Raschke M, Petersen W, Zantop T (2011) Structural properties of a new device for graft fixation in cruciate ligament reconstruction: the shim technique. Arch Orthop Trauma Surg 131:1067–1072

    Article  CAS  PubMed  Google Scholar 

  21. Lenschow S, Schliemann B, Dressler K, Zampogna B, Vasta S, Raschke M, Zantop T (2011) Structural properties of a new fixation strategy in double bundle ACL reconstruction: the MiniShim. Arch Orthop Trauma Surg 131:1159–1165

    Article  CAS  PubMed  Google Scholar 

  22. Lipscomb AB, Johnston RK, Snyder RB, Warburton MJ, Gilbert PP (1982) Evaluation of hamstring strength following use of semitendinosus and gracilis tendons to reconstruct the anterior cruciate ligament. Am J Sports Med 10:340–342

    Article  CAS  PubMed  Google Scholar 

  23. Miyata K, Yasuda K, Kondo E, Nakano H, Kimura S, Hara N (2000) Biomechanical comparisons of anterior cruciate ligament: reconstruction procedures with flexor tendon graft. J Orthop Sci 5:585–592

    Article  CAS  PubMed  Google Scholar 

  24. Miyatake S, Kondo E, Tohyama H, Kitamura N, Yasuda K (2010) Biomechanical evaluation of a novel application of a fixation device for bone-tendon-bone graft (EndoButton CL BTB) to soft-tissue grafts in anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:1226–1232

    Article  PubMed  Google Scholar 

  25. Morris MW, Williams JL, Thake AJ, Lang Y, Brown JN (2004) Optimal screw diameter for interference fixation in a bone tunnel: a porcine model. Knee Surg Sports Traumatol Arthrosc 12:486–489

    CAS  PubMed  Google Scholar 

  26. Niedzwietzki P, Zantop T, Weimann A, Herbort M, Raschke MJ, Petersen W (2007) Femoral fixation of hamstring grafts in posterior cruciate ligament reconstruction: biomechanical evaluation of different fixation techniques: is there an acute angle effect? Am J Sports Med 35:780–786

    Article  PubMed  Google Scholar 

  27. Ninomiya T, Tachibana Y, Miyajima T, Yamazaki K, Oda H (2011) Fixation strength of the interference screw in the femoral tunnel: the effect of screw divergence on the coronal plane. Knee 18:83–87

    Article  PubMed  Google Scholar 

  28. Nurmi JT, Sievanen H, Kannus P, Jarvinen M, Jarvinen TL (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771

    Article  PubMed  Google Scholar 

  29. Omar M, Petri M, Dratzidis A, El Nehmer S, Hurschler C, Krettek C, Jagodzinski M, Ettinger M (2014) Biomechanical comparison of fixation techniques for medial collateral ligament anatomical augmented repair. Knee Surg Sports Traumatol Arthrosc

  30. Prado M, Martin-Castilla B, Espejo-Reina A, Serrano-Fernandez JM, Perez-Blanca A, Ezquerro F (2013) Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:476–484

    Article  PubMed  Google Scholar 

  31. Prodromos CC, Fu FH, Howell SM, Johnson DH, Lawhorn K (2008) Controversies in soft-tissue anterior cruciate ligament reconstruction: grafts, bundles, tunnels, fixation, and harvest. J Am Acad Orthop Surg 16:376–384

    Article  PubMed  Google Scholar 

  32. Rylander L, Brunelli J, Taylor M, Baldini T, Ellis B, Hawkins M, McCarty E (2014) A biomechanical comparison of anterior cruciate ligament suspensory fixation devices in a porcine cadaver model. Clin Biomechc (Bristol, Avon) 29:230–234

    Article  Google Scholar 

  33. Sakaguchi K, Tachibana Y, Oda H (2012) Biomechanical properties of porcine flexor tendon fixation with varying throws and stitch methods. Am J Sports Med 40:1641–1645

    Article  PubMed  Google Scholar 

  34. Sawyer GA, Anderson BC, Paller D, Heard WM, Fadale PD (2013) Effect of interference screw fixation on ACL graft tensile strength. J Knee Surg 26:155–159

    PubMed  Google Scholar 

  35. Seo YJ, Yoo YS, Kim YS, Jang SW, Song SY, Hyun YS, Smolinski P, Fu FH (2014) The effect of notchplasty on tunnel widening in anterior cruciate ligament reconstruction. Arthroscopy 30:739–746

    Article  PubMed  Google Scholar 

  36. Shen HC, Chang JH, Lee CH, Shen PH, Yeh TT, Wu CC, Kuo CL (2010) Biomechanical comparison of cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction—a porcine femur-graft-tibia complex study. J Surg Res 161:282–287

    Article  PubMed  Google Scholar 

  37. Shen PH, Lien SB, Shen HC, Wang CC, Huang GS, Chao KH, Lee CH, Lin LC (2009) Comparison of different sizes of bioabsorbable interference screws for anterior cruciate ligament reconstruction using bioabsorbable bead augmentation in a porcine model. Arthroscopy 25:1101–1107

    Article  PubMed  Google Scholar 

  38. Wu JL, Yeh TT, Shen HC, Cheng CK, Lee CH (2009) Mechanical comparison of biodegradable femoral fixation devices for hamstring tendon graft—a biomechanical study in a porcine model. Clin Biomech Bristol Avon 24:435–440

    Article  Google Scholar 

  39. Yamanaka M, Yasuda K, Tohyama H, Nakano H, Wada T (1999) The effect of cyclic displacement on the biomechanical characteristics of anterior cruciate ligament reconstructions. Am J Sports Med 27:772–777

    CAS  PubMed  Google Scholar 

  40. Zhang AL, Lewicky YM, Oka R, Mahar A, Pedowitz R (2007) Biomechanical analysis of femoral tunnel pull-out angles for anterior cruciate ligament reconstruction with bioabsorbable and metal interference screws. Am J Sports Med 35:637–642

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Omar.

Ethics declarations

Dislcosure

All authors disclose any financial and personal relationships with other people or organisations that could inappropriately influence their work.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, M., Dratzidis, A., Klintschar, M. et al. Are porcine flexor digitorum profundus tendons suitable graft substitutes for human hamstring tendons in biomechanical in vitro-studies?. Arch Orthop Trauma Surg 136, 681–686 (2016). https://doi.org/10.1007/s00402-016-2425-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2425-9

Keywords

Navigation