Skip to main content
Log in

Decreased femoral periprosthetic bone mineral density: a comparative study using DXA in patients after cementless total hip arthroplasty with osteonecrosis of the femoral head versus primary osteoarthritis

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Trabecular properties in osteonecrosis of the femoral head (ONFH) are altered for bone volume and structure in the femoral head and proximal femoral canal. We analysed the periprosthetic bone mineral density (BMD) as a correlate to bony ingrowth in patients with ONFH who received a cementless THA.

Materials and methods

We performed a matched-pair analysis of 100 patients with ONFH (n = 50) and primary osteoarthritis (n = 50) who received the same, unilateral cementless THA. We compared the periprosthetic BMD 5 years after surgery by means of dual energy X-ray absorptiometry (DXA) analysing the seven femoral regions of interest (ROIs) according to Gruen.

Results

Within the ONFH group, significantly lower BMD values were found in the ROI 1 and 7 (p < 0.05). No statistically significant difference was found for ROIs 2–6.

Conclusions

An altered periprosthetic bone stock in the proximal femur in patients with prior ONFH might be a possible risk factor for premature loosening of the femoral stem in THA. Surgeons need to consider coating and fixation philosophy of cementless implants when choosing the right stem for patients with ONFH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calder JDF, Pearse MF, Revell PA (2001) The extent of osteocyte death in the proximal femur of patients with osteonecrosis of the femoral head. J Bone Joint Surg Br 83-B:419–422. doi:10.1302/0301-620X.83B3.10793

    Article  Google Scholar 

  2. Craiovan BS, Baier C, Grifka J et al (2013) Bone marrow edema syndrome (BMES). Orthop 42:191–204. doi:10.1007/s00132-012-2053-1

    Article  CAS  Google Scholar 

  3. Radl R, Hungerford M, Materna W et al (2005) Higher failure rate and stem migration of an uncemented femoral component in patients with femoral head osteonecrosis than in patients with osteoarthrosis. Acta Orthop 76:49–55. doi:10.1080/00016470510030319

    Article  PubMed  Google Scholar 

  4. Xenakis TA, Gelalis J, Koukoubis TA et al (2001) Cementless hip arthroplasty in the treatment of patients with femoral head necrosis. Clin Orthop 386:93–99

    Article  PubMed  Google Scholar 

  5. Kim Y-H, Kim J-S (2004) Histologic analysis of acetabular and proximal femoral bone in patients with osteonecrosis of the femoral head. J Bone Jt Surg 86:2471–2474

    Article  Google Scholar 

  6. Craiovan B, Wörner M, Maderbacher G et al (2015) Difference in periprosthetic acetabular bone mineral density: prior total hip arthroplasty: osteonecrosis of the femoral head versus primary osteoarthritis. Orthop Traumatol Surg Res 101:797–801. doi:10.1016/j.otsr.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  7. Canovas F, Girard J, Roche O et al (2015) Bone stock in revision femoral arthroplasty: a new evaluation. Int Orthop 39:1487–1494. doi:10.1007/s00264-014-2647-9

    Article  PubMed  Google Scholar 

  8. Salemyr M, Muren O, Eisler T et al (2014) Porous titanium construct cup compared to porous coated titanium cup in total hip arthroplasty. A randomised controlled trial. Int Orthop 39:823–832. doi:10.1007/s00264-014-2571-z

    Article  PubMed  Google Scholar 

  9. Jahnke A, Engl S, Altmeyer C et al (2014) Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. Int Orthop 38:2045–2050. doi:10.1007/s00264-014-2370-6

    Article  PubMed  Google Scholar 

  10. Trevisan C, Bigoni M, Cherubini R et al (1993) Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53:158–161

    Article  CAS  PubMed  Google Scholar 

  11. Laroche M, Costa L, Bernard J et al (1998) Dual-energy X-ray absorptiometry in osteonecrosis of the femoral head. Rev Rhum Engl Ed 65:393–396

    CAS  PubMed  Google Scholar 

  12. Lewinnek G, Lewis J, Tarr R et al (1978) Dislocations after total hip-replacement arthroplasties. J Bone Jt Surg 60:217–220

    CAS  Google Scholar 

  13. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  14. Tingart M, Beckmann J, Opolka A et al (2009) Analysis of bone matrix composition and trabecular microarchitecture of the femoral metaphysis in patients with osteonecrosis of the femoral head. J Orthop Res 27:1175–1181. doi:10.1002/jor.20873

    Article  PubMed  Google Scholar 

  15. Delee JG, Charnley J (1976) Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop 121:20–32

    PubMed  Google Scholar 

  16. Gasbarra E, Celi M, Perrone FL et al (2014) Osseointegration of fitmore stem in total hip arthroplasty. J Clin Densitom 17:307–313. doi:10.1016/j.jocd.2013.11.001

    Article  PubMed  Google Scholar 

  17. Sabo D, Reiter A, Simank HG et al (1998) Periprosthetic mineralization around cementless total hip endoprosthesis: longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–182. doi:10.1007/s002239900413

    Article  CAS  PubMed  Google Scholar 

  18. Sendtner E, Schuster T, Wörner M et al (2011) Accuracy of acetabular cup placement in computer-assisted, minimally-invasive THR in a lateral decubitus position. Int Orthop 35:809–815. doi:10.1007/s00264-010-1042-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Keshmiri A, Schröter C, Weber M et al (2015) No difference in clinical outcome, bone density and polyethylene wear 5–7 years after standard navigated vs. conventional cementfree total hip arthroplasty. Arch Orthop Trauma Surg 135:723–730. doi:10.1007/s00402-015-2201-2

    Article  PubMed  Google Scholar 

  20. Hayaishi Y, Miki H, Nishii T et al (2007) Proximal femoral bone mineral density after resurfacing total hip arthroplasty and after standard stem-type cementless total hip arthroplasty, both having similar neck preservation and the same articulation type. J Arthroplasty 22:1208–1213

    Article  PubMed  Google Scholar 

  21. Penny JO, Brixen K, Varmarken JE et al (2012) Changes in bone mineral density of the acetabulum, femoral neck and femoral shaft, after hip resurfacing and total hip replacement: two-year results from a randomised study. J Bone Joint Surg Br 94-B:1036–1044. doi:10.1302/0301-620X.94B8.28222

    Article  Google Scholar 

  22. Hakulinen MA, Borg H, Häkkinen A et al (2010) Quantification of bone density of the proximal femur after hip resurfacing arthroplasty—comparison of different DXA acquisition modes. J Clin Densitom 13:426–432. doi:10.1016/j.jocd.2010.07.001

    Article  PubMed  Google Scholar 

  23. Karachalios T, Tsatsaronis C, Efraimis G et al (2004) The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study1 1No benefits or funds were received in support of this study. J Arthroplasty 19:469–475

    Article  PubMed  Google Scholar 

  24. Okano T, Hagino H, Otsuka T et al (2002) Measurement of periprosthetic bone mineral density by dual-energy X-ray absorptiometry is useful for estimating fixation between the bone and the prosthesis in an early stage. J Arthroplasty 17:49–55

    Article  CAS  PubMed  Google Scholar 

  25. Rahmy AIA, Gosens T, Blake GM et al (2004) Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15:281–289. doi:10.1007/s00198-003-1546-5

    Article  CAS  PubMed  Google Scholar 

  26. Venesmaa PK, Kröger HPJ, Miettinen HJA et al (2001) Monitoring of periprosthetic bmd after uncemented total hip arthroplasty with dual-energy X-Ray absorptiometry—a 3-year follow-up study. J Bone Miner Res 16:1056–1061. doi:10.1359/jbmr.2001.16.6.1056

    Article  CAS  PubMed  Google Scholar 

  27. El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM Mon J Assoc Phys 101:605–617. doi:10.1093/qjmed/hcn022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Craiovan.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craiovan, B., Woerner, M., Winkler, S. et al. Decreased femoral periprosthetic bone mineral density: a comparative study using DXA in patients after cementless total hip arthroplasty with osteonecrosis of the femoral head versus primary osteoarthritis. Arch Orthop Trauma Surg 136, 709–713 (2016). https://doi.org/10.1007/s00402-016-2423-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2423-y

Keywords

Navigation