Skip to main content
Log in

The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures

Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The aim of this prospective study was to investigate the effect of local hip bone density on mechanical failure after fixation of pertrochanteric fractures and to establish possible risk factors for the failures.

Materials and methods

A total of 136 consecutive patients presenting a closed unilateral pertrochanteric fracture were enrolled. The patients were treated with a sliding hip screw or an intramedullary nail. Dual energy X-ray absorptiometry measurements for bone density of the contralateral hip were made within 4 weeks postoperatively. Follow-up evaluations on the standard radiographs were documented for any mechanical failure including loss of reduction, screw or blade cut-out, lateral migration of the screw or blade, and implant breakage. Secondary outcomes were also recorded including patient characteristics and fixation construct variables as possible predictors for mechanical failure.

Results

At a minimum of 2 years of follow-up, 38 patients were reported with mechanical failure at an estimated risk of 27.9 %. The local bone density measurements for the study population showed no difference between patients with (0.710 g/cm2) and without (0.726 g/cm2) mechanical failure (P = 0.180). We also observed no significant correlation between local bone density and failure in patients with good fracture reduction (P = 0.862). The multivariate regression analysis identified fracture type (P < 0.001) and quality of fracture reduction (P < 0.001) as being independent predictors for mechanical failure, whereas local bone density was not (P = 0.658).

Conclusions

Local hip bone density does not appear to have a significant influence on mechanical failure after internal fixation of pertrochanteric fractures. Stable fractures and fractures with good reduction are expected to obtain satisfactory outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Park SR, Kang JS, Kim HS et al (1998) Treatment of intertrochanteric fracture with the Gamma AP locking nail or by a compression hip screw—a randomized prospective trial. Int Orthop 22:157–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Herman A, Landau Y, Gutman G et al (2012) Radiological evaluation of intertrochanteric fracture fixation by the proximal femoral nail. Injury 43:856–863. doi:10.1016/j.injury.2011.10.030

    Article  PubMed  Google Scholar 

  3. Aros B, Tosteson AN, Gottlieb DJ et al (2008) Is a sliding hip screw or im nail the preferred implant for intertrochanteric fracture fixation? Clin Orthop Relat Res 466:2827–2832. doi:10.1007/s11999-008-0285-5

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yuan GX, Shen YH, Chen B et al (2012) Biomechanical comparison of internal fixations in osteoporotic intertrochanteric fracture. A finite element analysis. Saudi Med J 33:732–739

    PubMed  Google Scholar 

  5. Matre K, Vinje T, Havelin LI et al (2013) TRIGEN INTERTAN intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and 1 year of follow-up. J Bone Joint Surg Am 95:200–208. doi:10.2106/JBJS.K.01497

    Article  PubMed  Google Scholar 

  6. Streubel PN, Moustoukas MJ, Obremskey WT (2013) Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures. J Orthop Trauma 27:22–28. doi:10.1097/BOT.0b013e318251930d

    Article  PubMed  Google Scholar 

  7. Kim WY, Han CH, Park JI et al (2001) Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop 25:360–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Konstantinidis L, Papaioannou C, Blanke P et al (2013) Failure after osteosynthesis of trochanteric fractures. Where is the limit of osteoporosis? Osteoporos Int 24:2701–2706. doi:10.1007/s00198-013-2392-8

    Article  CAS  PubMed  Google Scholar 

  9. Andruszkow H, Frink M, Fromke C et al (2012) Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop 36:2347–2354. doi:10.1007/s00264-012-1636-0

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wu CC, Tai CL (2010) Effect of lag-screw positions on modes of fixation failure in elderly patients with unstable intertrochanteric fractures of the femur. J Orthop Surg (Hong Kong) 18:158–165

    Google Scholar 

  11. Swiontkowski MF, Harrington RM, Keller TS et al (1987) Torsion and bending analysis of internal fixation techniques for femoral neck fractures: the role of implant design and bone density. J Orthop Res 5:433–444

    Article  CAS  PubMed  Google Scholar 

  12. Goh JC, Shah KM, Bose K (1995) Biomechanical study on femoral neck fracture fixation in relation to bone mineral density. Clin Biomech 10:304–308

    Article  Google Scholar 

  13. Tingart MJ, Lehtinen J, Zurakowski D et al (2006) Proximal humeral fractures: regional differences in bone mineral density of the humeral head affect the fixation strength of cancellous screws. J Shoulder Elbow Surg 15:620–624. doi:10.1016/j.jse.2005.09.007

    Article  PubMed  Google Scholar 

  14. Davis TR, Sher JL, Horsman A et al (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 72:26–31

    CAS  PubMed  Google Scholar 

  15. Walsh ME, Wilkinson R, Stother IG (1990) Biomechanical stability of four-part intertrochanteric fractures in cadaveric femurs fixed with a sliding screw-plate. Injury 21:89–92

    Article  CAS  PubMed  Google Scholar 

  16. (2003) Osteoporosis: strategies for prevention and management. World Health Organ Tech Rep Ser 921:1–164

  17. Koval KJ, Friend KD, Aharonoff GB, Zukerman JD (1996) Weight bearing after hip fracture: a prospective series of 596 geriatric hip fracture patients. J Orthop Trauma 10(8):526–530

    Article  CAS  PubMed  Google Scholar 

  18. Müller ENS, Koch P, Schatzker J et al (1990) The comprehensive classification of fractures of long bones. Springer, Berlin, pp 120–121

    Book  Google Scholar 

  19. Gardner MJ, Briggs SM, Kopjar B et al (2007) Radiographic outcomes of intertrochanteric hip fractures treated with the trochanteric fixation nail. Injury 38:1189–1196. doi:10.1016/j.injury.2007.03.014

    Article  PubMed  Google Scholar 

  20. Baumgaertner MR, Curtin SL, Lindskog DM et al (1995) The value of the tip–apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064

    CAS  PubMed  Google Scholar 

  21. Im GI, Shin YW, Song YJ (2005) Potentially unstable intertrochanteric fractures. J Orthop Trauma 19:5–9

    Article  PubMed  Google Scholar 

  22. Laros GS, Moore JF (1974) Complications of fixation in intertrochanteric fractures. Clin Orthop Relat Res 101:110–119

    PubMed  Google Scholar 

  23. Laros GS (1975) Intertrochanteric fractures. The role of complications of fixation. Arch Surg 110:37–40

    Article  CAS  PubMed  Google Scholar 

  24. Larsson S, Friberg S, Hansson LI (1990) Trochanteric fractures. Mobility, complications, and mortality in 607 cases treated with the sliding-screw technique. Clin Orthop Relat Res 260:232–241

    PubMed  Google Scholar 

  25. Bonnaire F, Weber A, Bosl O et al (2007) “Cutting out” in pertrochanteric fractures–problem of osteoporosis? Unfallchirurg 110:425–432

    Article  CAS  PubMed  Google Scholar 

  26. Kralinger F, Blauth M, Goldhahn J et al (2014) The influence of local bone density on the outcome of one hundred and fifty proximal humeral fractures treated with a locking plate. J Bone Joint Surg Am 96:1026–1032. doi:10.2106/JBJS.M.00028

    Article  PubMed  Google Scholar 

  27. Viberg B, Ryg J, Overgaard S et al (2014) Low bone mineral density is not related to failure in femoral neck fracture patients treated with internal fixation. Acta Orthop 85:60–65. doi:10.3109/17453674.2013.875360

    Article  PubMed Central  PubMed  Google Scholar 

  28. Koot VC, Kesselaer SM, Clevers GJ et al (1996) Evaluation of the Singh index for measuring osteoporosis. J Bone Joint Surg Br 78:831–834

    CAS  PubMed  Google Scholar 

  29. Hauschild O, Ghanem N, Oberst M et al (2009) Evaluation of Singh index for assessment of osteoporosis using digital radiography. Eur J Radiol 71:152–158. doi:10.1016/j.ejrad.2008.03.019

    Article  CAS  PubMed  Google Scholar 

  30. Liu W, Zhou D, Liu F et al (2013) Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg 75:304–310. doi:10.1097/TA.0b013e31829a2c43

    Article  PubMed  Google Scholar 

  31. Kashigar A, Vincent A, Gunton MJ et al (2014) Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Joint J 96(8):1029–1034. doi:10.1302/0301-620X.96B8.33644

    Article  PubMed  Google Scholar 

  32. Pervez H, Parker MJ, Vowler S (2004) Prediction of fixation failure after sliding hip screw fixation. Injury 35:994–998. doi:10.1016/j.injury.2003.10.028

    Article  PubMed  Google Scholar 

  33. Nikoloski AN, Osbrough AL, Yates PJ (2013) Should the tip–apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. J Orthop Surg Res 17(8):35. doi:10.1186/1749-799X-8-35

    Article  Google Scholar 

  34. Bansal SC, Khandelwal N, Rai DV et al (2011) Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine. J Clin Diagn Res 5(4):694–699

    Google Scholar 

Download references

Acknowledgments

We would like to thank Weiliang Wang M.D. and Debiao Zhou M.D. for the preparation of the manuscript, and Edem Prince Ghamor-Amegavi M.D. for valuable help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The protocol involving human study has been approved by the institutional review board at our hospital and is in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participating patients signed written informed consents prior to entering the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xie, B., Chen, S. et al. The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures. Arch Orthop Trauma Surg 136, 223–232 (2016). https://doi.org/10.1007/s00402-015-2369-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2369-5

Keywords

Navigation