Skip to main content
Log in

In vitro testing of the osteoinductive potential of different bony allograft preparations

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Bony allografts are used frequently in the clinic for bone defect filling, however, less comparative data concerning their osteoinductive potential are available.

Aim

The purpose of the present study was the comparative analysis of different allograft preparations. From five donors, we investigated fresh-frozen cancellous bone (native), peracetic acid–ethanol sterilized (PES) cancellous bone, cortical bone and demineralised bone matrix (DBM). In addition, two commercially available DBM products from five different donors were analyzed: Allomatrix® (Wright Medical Technology Inc.) and DBX putty® (Synthes GmbH). For positive control and as a clinically used growth factor, BMP-2 was chosen.

Method

To investigate the osteoinductivity C2C12 cells were cultured with the different materials and the effect on cell proliferation and alkaline phosphatase activity were measured.

Result

Proliferation was significantly enhanced by the native cancellous bone, Allomatrix, and BMP-2 and decreased by the PES-processed cancellous bone. The osteogenic differentiation was significantly enhanced by BMP-2 and the two commercial DBM products and decreased by PES-sterilized cancellous bone. All tested materials revealed a high donor-dependent variability. This is the first comparative study on the osteoinductivity of bony allografts frequently used in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alt V, Heissel A (2006) Economic considerations for the use of recombinant human bone morphogenetic protein-2 in open tibial fractures in Europe: the German model. Curr Med Res Opin 22(Suppl 1):S19–S22

    Google Scholar 

  2. Bonewald LF (2002) Transforming growth factor-β. In: Bilezikan JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 903–918

    Google Scholar 

  3. DeLong WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R et al (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Jt Surg Am 89:649–658

    Article  Google Scholar 

  4. Dinopoulos HT, Giannoudis PV (2006) Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. Expert Opin Drug Saf 5:847–866

    Google Scholar 

  5. Drosos GI, Kazakos KI, Kouzoumpasis P, Verettas DA (2007) Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury 38(Suppl 4):S13–S21

    Google Scholar 

  6. Eufinger H, Leppanen H (2000) Iliac crest donor site morbidity following open and closed methods of bone harvest for alveolar cleft osteoplasty. J Craniomaxillofac Surg 28:31–38

    CAS  PubMed  Google Scholar 

  7. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Jt Surg Am 84-A:454–464

    Google Scholar 

  8. Glowacki J (2005) A review of osteoinductive testing methods and sterilization processes for demineralized bone. Cell Tissue Bank 6:3–12

    Article  PubMed  Google Scholar 

  9. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am 84-A:2123–2134

    Google Scholar 

  10. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bone-graft substitutes: facts, fictions, and applications. J Bone Jt Surg Am 83-A(Suppl 2) Pt 2:98–103

    Google Scholar 

  11. Han B, Tang B, Nimni ME (2003) Quantitative and sensitive in vitro assay for osteoinductive activity of demineralized bone matrix. J Orthop Res 21:648–654

    Article  CAS  PubMed  Google Scholar 

  12. Han B, Yang Z, Nimni M (2005) Effects of moisture and temperature on the osteoinductivity of demineralized bone matrix. J Orthop Res 23:855–861

    Article  PubMed  Google Scholar 

  13. Hill PA (1998) Bone remodelling. Br J Orthod 25:101–107

    Article  CAS  PubMed  Google Scholar 

  14. Jortikka L, Laitinen M, Wiklund J, Lindholm TS, Marttinen A (1998) Use of myoblasts in assaying the osteoinductivity of bone morphogenetic proteins. Life Sci 62:2359–2368

    Article  CAS  PubMed  Google Scholar 

  15. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T et al (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  CAS  PubMed  Google Scholar 

  16. Levander G (1945) Tissue induction: nature 155:148–149

    Google Scholar 

  17. Pinholt EM, Solheim E (1998) Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood. J Craniofac Surg 9:142–146

    Article  CAS  PubMed  Google Scholar 

  18. Pruss A, Baumann B, Seibold M, Kao M, Tintelnot K, Von Versen R et al (2001) Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid–ethanol. Biologicals 29:59–66

    Article  CAS  PubMed  Google Scholar 

  19. Schmidmaier G, Wildemann B, Stemberger A, Haas NP, Raschke M (2001) Biodegradable poly(d,l-lactide) coating of implants for continuous release of growth factors. J Biomed Mater Res Appl Biomat 58:449–455

    Article  CAS  Google Scholar 

  20. Schwartz Z, Somers A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL et al (1998) Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol 69:470–478

    CAS  PubMed  Google Scholar 

  21. Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):S75–S80

    Article  PubMed  Google Scholar 

  22. Shigeyama Y, D’Errico JA, Stone R, Somerman MJ (1995) Commercially-prepared allograft material has biological activity in vitro. J Periodontol 66:478–487

    CAS  PubMed  Google Scholar 

  23. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS et al (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139

    Article  PubMed  Google Scholar 

  24. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 45:13–38

    CAS  PubMed  Google Scholar 

  25. Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D (2004) Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater 70:21–29

    Article  PubMed  Google Scholar 

  26. Urist MR (1953) Physiologic basis of bone-graft surgery, with special reference to the theory of induction. Clin Orthop 1:207–216

    CAS  PubMed  Google Scholar 

  27. Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res. 50:1392–1406

    CAS  PubMed  Google Scholar 

  28. Wildemann B, Kadow-Romacker A, Pruss A, Haas NP, Schmidmaier G (2007) Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank 8:107–114

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM et al (1996) Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3–G2/PA6. Biochem Biophys Res Commun 220:366–371

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997) Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 68:1085–1092

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant of the Berlin-Brandenburg Center for Regenerative Therapies (BCRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britt Wildemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, N., Pruss, A., Schmidmaier, G. et al. In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg 130, 143–149 (2010). https://doi.org/10.1007/s00402-009-0908-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-009-0908-7

Keywords

Navigation