Skip to main content

Advertisement

Log in

The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Non-steroidal anti-inflammatory drug (NSAID) is well known to significantly delay fracture healing. Results from in vitro studies implicate an impairment of osteoblast proliferation due to NSAIDs during the initial stages of healing. We studied whether diclofenac, a non-selective NSAID, also impairs appearance of osteoblasts in vivo during the early phase of healing (at 10 days).

Materials and methods

Two defects (Ø 1.1 mm) were drilled within distal femurs of 20 male Wistar rats. Ten rats received diclofenac continuously; the other obtained a placebo until sacrificing at 10 days. Osteoblast proliferation was assessed by cell counting using light microscopy, and bone mineral density (BMD) was measured using pQCT.

Results

Osteoblast counts from the centre of bone defect were significantly reduced in the diclofenac group (median 73.5 ± 8.4 cells/grid) compared to animals fed with placebo (median 171.5 ± 13.9 cells/grid). BMD within the defect showed a significant reduction after diclofenac administration (median 111.5 ± 9.3 mg/cm³) compared to the placebo group (median 177 ± 45.4 mg/cm³).

Conclusion

The reduced appearance of osteoblasts in vivo implicates an inhibiting effect of diclofenac on osteoblasts at a very early level of bone healing. The inhibition of proliferation and migration of osteoblasts, or differentiation from progenitor cells, is implicated in the delay of fracture healing after NSAID application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. al Balla SR, el Sayed YM, al Meshal MA, Gouda MW (1994) The effects of cholestyramine and colestipol on the absorption of diclofenac in man. Int J Clin Pharmacol Ther 32:441–445

    PubMed  CAS  Google Scholar 

  2. Arikawa T, Omura K, Morita I (2004) Regulation of bone morphogenetic protein-2 expression by endogenous prostaglandin E2 in human mesenchymal stem cells. J Cell Physiol 200:400–406

    Article  PubMed  CAS  Google Scholar 

  3. Beck A, Krischak G, Sorg T, Augat P, Farker K, Merkel U, Kinzl L, Claes L (2003) Influence of diclofenac (group of nonsteroidal anti-inflammatory drugs) on fracture healing. Arch Orthop Trauma Surg 123:327–332

    Article  PubMed  CAS  Google Scholar 

  4. Bhandari M, Schemitsch EH (2002) Bone formation following intramedullary femoral reaming is decreased by indomethacin and antibodies to insulin-like growth factors. J Orthop Trauma 16:717–722

    Article  PubMed  Google Scholar 

  5. Blair HC, Athanasou NA (2004) Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol 19:189–199

    PubMed  CAS  Google Scholar 

  6. Bort R, Ponsoda X, Jover R, Gomez-Lechon MJ, Castell JV (1999) Diclofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity. J Pharmacol Exp Ther 288:65–72

    PubMed  CAS  Google Scholar 

  7. Boushel R, Langberg H, Risum N, Kjaer M (2004) Regulation of blood flow by prostaglandins. Curr Vasc Pharmacol 2:191–197

    Article  PubMed  CAS  Google Scholar 

  8. Brown KM, Saunders MM, Kirsch T, Donahue HJ, Reid JS (2004) Effect of COX-2-specific inhibition on fracture-healing in the rat femur. J Bone Joint Surg Am 86-A:116–123

    PubMed  Google Scholar 

  9. Dekel S, Lenthall G, Francis MJO (1981) Release of prostaglandins from bone and muscle after tibial fracture. An experimental study in rabbits. J Bone Joint Surg Br 63-B:185–189

    PubMed  CAS  Google Scholar 

  10. Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20:S1–S13

    PubMed  CAS  Google Scholar 

  11. Endo K, Sairyo K, Komatsubara S, Sasa T, Egawa H, Yonekura D, Adachi K, Ogawa T, Murakami R, Yasui N (2002) Cyclooxygenase-2 inhibitor inhibits the fracture healing. J Physiol Anthropol Appl Human Sci 21:235–238

    Article  PubMed  Google Scholar 

  12. Harizi H, Norbert G (2004) Inhibition of IL-6, TNF-alpha, and cyclooxygenase-2 protein expression by prostaglandin E2-induced Il-10 in bone marrow-derived dendritic cells. Cell Immunol 228:99–109

    Article  PubMed  CAS  Google Scholar 

  13. Ho ML, Chang JK, Chuang LY, Hsu HK, Wang GJ (1999) Effects of nonsteroidal anti-inflammatory drugs and prostaglandins on osteoblastic functions. Biochem Pharmacol 58:983–990

    Article  PubMed  CAS  Google Scholar 

  14. Høgevold HE, Grøgaard B, Reikerås O (1992) Effects of short-term treatment with corticosteroids and indomethacin on bone healing. A mechanical study of osteotomies in rats. Acta Orthop Scand 63:607–611

    PubMed  Google Scholar 

  15. Kaspar D, Hedrich CM, Schmidt C, Liedert A, Claes LE, Ignatius AA (2005) Diclofenac hemmt die Proliferation und Matrixbildung osteoblastärer Zellen. Unfallchirurg 108:18–24

    Article  PubMed  CAS  Google Scholar 

  16. Krischak GD, Augat P, Sorg T, Blakytny R, KInzl L, Claes L, Beck A (2007) Effects of diclofenac on periosteal callus maturation in osteotomy healing in an animal model. Arch Orthop Trauma Surg 127:3–9

    Article  PubMed  Google Scholar 

  17. Li TF, Zuscik MJ, Ionescu AM, Zhang X, Rosier RN, Schwarz EM, Drissi H, O’Keefe RJ (2004) PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. Exp Cell Res 300:159–169

    Article  PubMed  CAS  Google Scholar 

  18. Liles JH, Flecknell PA (1994) A comparison of the effects of buprenorphine, carprofen and flunixin following laparotomy in rats. J Vet Pharmacol Ther 17:284–290

    PubMed  CAS  Google Scholar 

  19. Matziolis G, Rau HM, Klever P, Erli HJ, Paar O (2002) Beeinflussung humaner Osteoblasten durch verschiedene Analgetika. Unfallchirurg 105:527–531

    Article  PubMed  CAS  Google Scholar 

  20. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102

    Article  PubMed  CAS  Google Scholar 

  21. Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K (2004) Prostaglandin E2 activates outwardly rectifying Cl(-) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol Cell Physiol 287:114–124

    Article  Google Scholar 

  22. Raisz LG, Woodiel FN (2003) Effects of selective prostaglandin EP2 and EP4 receptor agonists on bone resorption and formation on fetal rat organ cultures. Prostaglandins Other Lipid Mediat 71:287–292

    Article  PubMed  CAS  Google Scholar 

  23. Shamir D, Keila S, Weinreb M (2004) A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro. Bone 34:157–162

    Article  PubMed  CAS  Google Scholar 

  24. Vane JR, Botting RM (1998) Mechanism of action of antiinflammatory drugs. Int J Tissue React 20:3–15

    PubMed  CAS  Google Scholar 

  25. Vassiliou E, Jing H, Ganea D (2003) Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol 223:120–132

    Article  PubMed  CAS  Google Scholar 

  26. Vrotsos Y, Miller SC, Marks SC Jr (2003) Prostaglandin E–a powerful anabolic agent for generalized or site-specific bone formation. Crit Rev Eukaryot Gene Expr 13:255–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent technical assistance of Liselotte Mueller-Molenar, Patrizia Horny, Sonja Grueninger, and Marion Tomo. We would like to thank Novartis Pharma (Nuremberg, Germany) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Krischak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krischak, G.D., Augat, P., Blakytny, R. et al. The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 127, 453–458 (2007). https://doi.org/10.1007/s00402-007-0288-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0288-9

Keywords

Navigation