Skip to main content

Advertisement

Log in

Polylactide (LTS) causes less inflammation response than polydioxanone (PDS): a meniscus repair model in sheep

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Incidence of meniscus injury has increased in today’s active society. Arthroscopical refixation yields better results than partial meniscectomy. The best healing rates are achieved by sutures. As non-degradable sutures are permanent foreign bodies, slow absorbable materials are needed. A slow degradable suture with high concentration of polylactide acid, the so-called “long-term suture” (LTS, Panacryl), has been suggested to produce a higher inflammatory response than conventional polymer sutures [Vicryl, Dexon or polydioxanone (PDS)]. The aim of the study was to assess LTS for meniscus repair after a traumatic lesion and to evaluate immunological response, biodegradation and healing.

Methods

In 24 randomised sheep, a radial tear of the medial meniscus was sutured by either PDS or LTS. Twelve sham-operated animals served as control. Half of the sheep were killed after 6 months, the other half after 12 months. The medial and lateral meniscus, synovial membrane, articular cartilage and ascendant lymph nodes up to the kidney were examined. Joint effusion was evaluated by MRI.

Results

The synovial membrane was significantly thinner in the LTS group (6 months 85 ± 10 μm, 1 year 100 ± 28 μm) than in the PDS group (6 months 165 ± 10 μm, 1 year 175 ± 23 μm, P < 0.001) and the controls (6 months 150 ± 17 μm, 12 months 192 ± 21 μm, P < 0.001). The joint effusion was higher in the PDS than in the LTS group after 6 months, and tended to be higher in controls. In controls, effusion tended to be higher than in the LTS group. In all medial departments, osteoarthritis evolved much more intensely than in the lateral knee departments (P < 0.01). Bilateral lymph nodes from the groin up to the kidneys were larger (crosscut area) after 6 months in the controls (2.28 ± 0.7 mm²) and PDS treated animals (2.3 ± 0.7 mm²) than in the LTS group (1.3 ± 0.3 mm², P < 0.001). After 1 year, node size differed significantly between controls and animals from the LTS group (1.98 ± 0.4 mm² vs. 1.5 ± 0.2 mm², P < 0.05), and between animals from the PDS and the LTS group (2.5 ± 0.1 mm² vs. 1.5 ± 0.2 mm², P < 0.001).

Conclusion

The polylactide thread LTS causes less immunological reaction and synovitis than a polydioxanone suture (PDS). Clinical relevance: LTS may serve as an alternative to PDS for repair of slow healing structures such as tendons and menisci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams SB Jr, Randolph MA, Gill TJ (2005) Tissue engineering for meniscus repair. J Knee Surg 18:25–30

    PubMed  Google Scholar 

  2. Ahn JH, Wang JH, Yoo JC (2004) Arthroscopic all-inside suture repair of medial meniscus lesion in anterior cruciate ligament-deficient knees: results of second-look arthroscopies in 39 cases. Arthroscopy 20:936–945

    PubMed  Google Scholar 

  3. Arnoczky SP, Cooper TG, Stadelmaier DM, Hannafin JA (1994) Magnetic resonance signals in healing menisci: an experimental study in dogs. Arthroscopy 10:552–557

    Article  PubMed  CAS  Google Scholar 

  4. Asik M, Sen C, Erginsu M (2002a) Arthroscopic meniscal repair using T-fix. Knee Surg Sports Traumatol Arthrosc 10:284–288

    Article  Google Scholar 

  5. Asik M, Sen C, Taser OF, Sozen YV, Alturfan AK (2002b) [Arthroscopic meniscal repair with the use of conventional suturing materials]. Acta Orthop Traumatol Turc 36:228–235

    Google Scholar 

  6. Barber FA, Gurwitz GS (1988) Inflammatory synovial fluid and absorbable suture strength. Arthroscopy 4:272–277

    Article  PubMed  CAS  Google Scholar 

  7. Barber FA, Herbert MA, Richards DP (2004) Load to failure testing of new meniscal repair devices. Arthroscopy 20:45–50

    Article  PubMed  Google Scholar 

  8. Barber FA, Johnson DH, Halbrecht JL (2005) Arthroscopic meniscal repair using the BioStinger. Arthroscopy 21:744–750

    Article  PubMed  Google Scholar 

  9. Barber FA, Stone RG (1985) Meniscal repair. An arthroscopic technique. J Bone Joint Surg Br 67:39–41

    PubMed  CAS  Google Scholar 

  10. Bellemans J, Vandenneucker H, Labey L, Van Audekercke R (2002) Fixation strength of meniscal repair devices. Knee 9:11–14

    Article  PubMed  CAS  Google Scholar 

  11. Boenisch UW, Faber KJ, Ciarelli M, Steadman JR, Arnoczky SP (1999) Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures. Am J Sports Med 27:626–631

    PubMed  CAS  Google Scholar 

  12. Bostman OM, Pihlajamaki HK (2000) Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop.Relat Res 371:216–227

    Article  PubMed  Google Scholar 

  13. Cabaud HE, Rodkey WG, Fitzwater JE (1981) Medical meniscus repairs. An experimental and morphologic study. Am J Sports Med 9:129–134

    PubMed  CAS  Google Scholar 

  14. Clavert P, Warner JJ (2005) Panacryl synovitis: fact or fiction? Arthroscopy 21:200–203

    Article  PubMed  Google Scholar 

  15. Collier S, Hope N, Ghosh P (1996) Healing of circular defects in the rabbit medial meniscus can occur spontaneously and is not improved by intra-articular hyaluronic acid. Vet Comp Orthop Traumatol 9:60–65

    Google Scholar 

  16. Ethicon GmbH &Co. KG (1998) LTS: General description of clinically relevant features. Internal communication

  17. Field JR, Stanley RM (2004) Suture characteristics following incubation in synovial fluid or phosphate buffered saline. Injury 35:243–248

    Article  PubMed  Google Scholar 

  18. Forster MC, Aster AS (2003) Arthroscopic meniscal repair. Surgeon 1:323–327

    Article  PubMed  CAS  Google Scholar 

  19. Ghadially FN, Wedge JH, Lalonde JM (1986) Experimental methods of repairing injured menisci. J Bone Joint Surg Br 68:106–110

    PubMed  CAS  Google Scholar 

  20. Grayson AC, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 15:1281–1304

    Article  PubMed  CAS  Google Scholar 

  21. Guisasola I, Vaquero J, Forriol F (2002) Knee immobilization on meniscal healing after suture: an experimental study in sheep. Clin Orthop Relat Res 395:227–233

    Article  PubMed  Google Scholar 

  22. Hackenbruch W (1996) [Arthroscopy: possibilities and limitations in the diagnosis and therapy of meniscus lesions]. Ther Umsch 53:767–774

    PubMed  CAS  Google Scholar 

  23. Hede A, Jensen DB, Blyme P, Sonne-Holm S (1990) Epidemiology of meniscal lesions in the knee. 1,215 open operations in Copenhagen 1982–84. Acta Orthop Scand 61:435–437

    Article  PubMed  CAS  Google Scholar 

  24. Huang HY, Yin QS, Zhang Y, Liu JF (2004) [Results of 1310 knees of meniscal treatment evaluated by arthroscopy]. Zhonghua Wai Ke Za Zhi 42:730–732

    PubMed  Google Scholar 

  25. Hulet C, Schiltz D, Locker B, Beguin J, Vielpeau C (1998) [Lateral meniscal cyst. Retrospective study of 105 cysts treated with arthroscopy with 5 year follow-up]. Rev Chir Orthop Reparatrice Appar Mot 84:531–538

    PubMed  CAS  Google Scholar 

  26. Jager A, Khoudeir S, Braune C, Herresthal J (2002) Can meniscal suture repair in athletes prevent early development of osteoarthritis without compromising the preinjury sports activity level. Sportverletzung-Sportschaden 16:70–73

    Article  PubMed  CAS  Google Scholar 

  27. Kimura M, Shirakura K, Higuchi H, Kobayashi Y, Takagishi K (2004) Eight- to 14-year followup of arthroscopic meniscal repair. Clin Orthop Relat Res 421:175–180

    Article  PubMed  Google Scholar 

  28. Kurzweil PR, Tifford CD, Ignacio EM (2005) Unsatisfactory clinical results of meniscal repair using the meniscus arrow. Arthroscopy 21:905

    Article  PubMed  Google Scholar 

  29. Lam JJ, Poon AK, Ko PP, Ko Y, Tsang WW (2001) Modified cross-pin femoral fixation using long needles, polydioxanone suture, and traction suture for hamstring anterior cruciate ligament reconstruction. Arthroscopy 17:324–328

    Article  PubMed  Google Scholar 

  30. Lam KH, Schakenraad JM, Esselbrugge H, Feijen J, Nieuwenhuis P (1993) The effect of phagocytosis of poly(l-lactic acid) fragments on cellular morphology and viability. J Biomed Mater Res 27:1569–1577

    Article  PubMed  CAS  Google Scholar 

  31. McDermott ID, Richards SW, Hallam P, Tavares S, Lavelle JR, Amis AA (2003) A biomechanical study of four different meniscal repair systems, comparing pull-out strengths and gapping under cyclic loading. Knee Surg Sports Traumatol Arthrosc 11:23–29

    PubMed  CAS  Google Scholar 

  32. Meredith DS, Losina E, Mahomed NN, Wright J, Katz JN (2005) Factors predicting functional and radiographic outcomes after arthroscopic partial meniscectomy: a review of the literature. Arthroscopy 21:211–223

    Article  PubMed  Google Scholar 

  33. Miller MD, Kline AJ, Jepsen KG (2004) “All-inside” meniscal repair devices: an experimental study in the goat model. Am J Sports Med 32:858–862

    Article  PubMed  Google Scholar 

  34. Mooney MF, Rosenberg TD (1994) [Arthroscopic reattachment of the meniscus]. Orthopade 23:143–152

    PubMed  CAS  Google Scholar 

  35. Newman AP, Daniels AU, Burks RT (1993) Principles and decision making in meniscal surgery. Arthroscopy 9:33–51

    Article  PubMed  CAS  Google Scholar 

  36. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    PubMed  CAS  Google Scholar 

  37. Papachristou G, Efstathopoulos N, Plessas S, Levidiotis C, Chronopoulos E, Sourlas J (2003) Isolated meniscal repair in the avascular area. Acta Orthop Belg 69:341–345

    PubMed  Google Scholar 

  38. Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, Rehm KE (2004) Soft tissue reactions of different biodegradable polylactide implants. Biomaterials 25:259–267

    Article  PubMed  CAS  Google Scholar 

  39. Pyne SW (2002) Current progress in meniscal repair and postoperative rehabilitation. Curr Sports Med Rep 1:265–271

    PubMed  Google Scholar 

  40. Rangger C, Kathrein A, Klestil T, Glotzer W (1997) Partial meniscectomy and osteoarthritis. Implications for treatment of athletes. Sports Med 23:61–68

    Article  PubMed  CAS  Google Scholar 

  41. Rangger C, Klestil T, Gloetzer W, Kemmler G, Benedetto KP (1995) Osteoarthritis after arthroscopic partial meniscectomy. Am J Sports Med 23:240–244

    PubMed  CAS  Google Scholar 

  42. Raunest J, Derra E (1990) [Experimental results of biomechanical strength of the meniscus suture in the area of zone II]. Unfallchirurg 93:197–201

    PubMed  CAS  Google Scholar 

  43. Ray JA, Doddi N, Regula D, Williams JA, Melveger A (1981) Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet 153:497–507

    PubMed  CAS  Google Scholar 

  44. Rimmer MG, Nawana NS, Keene GC, Pearcy MJ (1995) Failure strengths of different meniscal suturing techniques. Arthroscopy 11:146–150

    Article  PubMed  CAS  Google Scholar 

  45. Roddecker K, Edelmann M (1991) [Arthroscopic meniscus suture]. Langenbecks Arch Chir Suppl Kongressbd 430–432

  46. Rostock P (1951) [Therapy of knee-joint synovitis in the practice.]. Ther Ggw 90:166–169

    PubMed  CAS  Google Scholar 

  47. Rubman MH, Noyes FR, Barber-Westin SD (1998) Arthroscopic repair of meniscal tears that extend into the avascular zone. A review of 198 single and complex tears. Am J Sports Med 26:87–95

    PubMed  CAS  Google Scholar 

  48. Shea KG, Bloebaum RD, Avent JM, Birk T, Samuelson KA (1996) Analysis of lymph nodes for polyethylene particles in patients who have had a primary joint replacement. J Bone Joint Surg Am 78:497–504

    PubMed  CAS  Google Scholar 

  49. Stock UA, Mayer JE Jr. (2001) Tissue engineering of cardiac valves on the basis of PGA/PLA co-polymers. J Long Term Eff Med Implants 11:249–260

    PubMed  CAS  Google Scholar 

  50. Stone RG, VanWinkle GN (1986) Arthroscopic review of meniscal repair: assessment of healing parameters. Arthroscopy 2:77–81

    Article  PubMed  CAS  Google Scholar 

  51. Taylor MS, Daniels AU, Andriano KP, Heller J (1994) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 5:151–157

    Article  PubMed  CAS  Google Scholar 

  52. Voges J, Lehrke R, Kim DG, Lucas C, Schroder R, Sturm V, Stricker H (2002) Tissue reactions after long-term intracerebral implantation of three different types of biodegradable polylactide rods in the rat. J Exp Ther Oncol 2:70–76

    Article  PubMed  CAS  Google Scholar 

  53. Wada A, Kubota H, Taketa M, Miuri H, Iwamoto Y (2002) Comparison of the mechanical properties of polyglycolide-trimethylene carbonate (Maxon) and polydioxanone sutures (PDS2) used for flexor tendon repair and active mobilization. J Hand Surg (Br) 27:329–332

    Article  CAS  Google Scholar 

  54. Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321

    Article  PubMed  CAS  Google Scholar 

  55. Wickham MQ, Wyland DJ, Glisson RR, Speer KP (2003) A biomechanical comparison of suture constructs used for coracoclavicular fixation. J South Orthop Assoc 12:143–148

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. E. Rehm M.D., Ph.D., Director of the Department of Trauma, Hand- and Reconstructive Surgery, University of Cologne Medical Center, for giving support and much advice in this animal study, Sabine Dentler, Department for Biochemistry, University of Bonn Medical Center, and Mary S. Elm, BS, Department of Medicine, Division of Gastroenterology, University of Pittsburgh Medical Center, for proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Burger.

Additional information

Christof Burger and Koroush Kabir have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, C., Kabir, K., Rangger, C. et al. Polylactide (LTS) causes less inflammation response than polydioxanone (PDS): a meniscus repair model in sheep. Arch Orthop Trauma Surg 126, 695–705 (2006). https://doi.org/10.1007/s00402-006-0207-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-006-0207-5

Keywords

Navigation