Skip to main content

Advertisement

Log in

Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Understanding regulation of MAPT splicing is important to the etiology of many nerurodegenerative diseases, including Alzheimer disease (AD) and progressive supranuclear palsy (PSP), in which different tau isoforms accumulate in pathologic inclusions. MAPT, the gene encoding the tau protein, undergoes complex alternative pre-mRNA splicing to generate six isoforms. Tauopathies can be categorized by the presence of tau aggregates containing either 3 (3R) or 4 (4R) microtubule-binding domain repeats (determined by inclusion/exclusion of exon 10), but the role of the N-terminal domain of the protein, determined by inclusion/exclusion of exons 2 and 3 has been less well studied. Using a correlational screen in human brain tissue, we observed coordination of MAPT exons 2 and 10 splicing. Expressions of exon 2 splicing regulators and subsequently exon 2 inclusion are differentially disrupted in PSP and AD brain, resulting in the accumulation of 1N4R isoforms in PSP and 0N isoforms in AD temporal cortex. Furthermore, we identified different N-terminal isoforms of tau present in neurofibrillary tangles, dystrophic neurites and tufted astrocytes, indicating a role for differential N-terminal splicing in the development of disparate tau neuropathologies. We conclude that N-terminal splicing and combinatorial regulation with exon 10 inclusion/exclusion is likely to be important to our understanding of tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apicco DJ, Zhang C, Maziuk B, Jiang L, Ballance HI, Boudeau S et al (2019) Dysregulation of RNA splicing in tauopathies. Cell Rep 29:4377-4388.e4. https://doi.org/10.1016/j.celrep.2019.11.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beevers JE, Lai MC, Collins E, Booth HDE, Zambon F, Parkkinen L et al (2017) MAPT genetic variation and neuronal maturity alter isoform expression affecting axonal transport in iPSC-derived dopamine neurons. Stem Cell Rep 9:587–599. https://doi.org/10.1016/j.stemcr.2017.06.005

    Article  CAS  Google Scholar 

  3. Boutajangout A, Boom A, Leroy K, Brion JP (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett 576:183–189. https://doi.org/10.1016/j.febslet.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  4. Brandt R, Léger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131:1327–1340. https://doi.org/10.1083/jcb.131.5.1327

    Article  CAS  PubMed  Google Scholar 

  5. Broderick J, Wang J, Andreadis A (2004) Heterogeneous nuclear ribonucleoprotein E2 binds to tau exon 10 and moderately activates its splicing. Gene 331:107–114. https://doi.org/10.1016/j.gene.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Bruch J, Xu H, De Andrade A, Höglinger G (2014) Mitochondrial complex 1 inhibition increases 4-repeat isoform tau by SRSF2 upregulation. PLoS ONE 9:e113070. https://doi.org/10.1371/journal.pone.0113070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. https://doi.org/10.1038/nbt.4096

    Article  PubMed  PubMed Central  Google Scholar 

  8. Caillet-Boudin M-L, Buée L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28. https://doi.org/10.1186/s13024-015-0025-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N (2014) Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 6:1–20. https://doi.org/10.3389/fnmol.2013.00057

    Article  Google Scholar 

  10. Cazalla D, Newton K, Cáceres JF (2005) A novel SR-related protein is required for the second step of pre-mRNA splicing. Mol Cell Biol 25:2969–2980. https://doi.org/10.1128/mcb.25.8.2969-2980.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Combs B, Hamel C, Kanaan NM (2016) Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies. Neurobiol Dis 94:18–31. https://doi.org/10.1016/j.nbd.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conrad C, Zhu J, Conrad C, Schoenfeld D, Fang Z, Ingelsson M et al (2007) Single molecule profiling of tau gene expression in Alzheimer’s disease. J Neurochem 103:1228–1236. https://doi.org/10.1111/j.1471-4159.2007.04857.x

    Article  CAS  PubMed  Google Scholar 

  13. D’Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta Mol Basis Dis 1739:104–115. https://doi.org/10.1016/j.bbadis.2004.08.009

    Article  CAS  Google Scholar 

  14. Derisbourg M, Leghay C, Chiappetta G, Fernandez-Gomez FJ, Laurent C, Demeyer D et al (2015) Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 5:1–10. https://doi.org/10.1038/srep09659

    Article  CAS  Google Scholar 

  15. Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao QS, Memmott J, Lafyatis R, Stamm S, Screaton G, Andreadis A (2000) Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J Neurochem 74:490–500. https://doi.org/10.1046/j.1471-4159.2000.740490.x

    Article  CAS  PubMed  Google Scholar 

  17. Gauthier-Kemper A, Alonso MS, Sündermann F, Niewidok B, Fernandez MP, Bakota L et al (2018) Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau’s axonal localization. J Biol Chem 293:8065–8076. https://doi.org/10.1074/jbc.RA117.000490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  19. Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Neurochem 96:1401–1408. https://doi.org/10.1111/j.1471-4159.2005.03641.x

    Article  CAS  PubMed  Google Scholar 

  20. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F et al (2006) The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 96:635–644. https://doi.org/10.1111/j.1471-4159.2005.03552.x

    Article  CAS  PubMed  Google Scholar 

  21. Goode BL, Feinstein SC (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol 124:769–781. https://doi.org/10.1083/jcb.124.5.769

    Article  CAS  PubMed  Google Scholar 

  22. Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C et al (2019) A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22:2087–2097. https://doi.org/10.1038/s41593-019-0539-4

    Article  CAS  PubMed  Google Scholar 

  23. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313

    Article  CAS  PubMed  Google Scholar 

  24. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:1–15. https://doi.org/10.1101/576827

    Article  CAS  Google Scholar 

  25. Hefti MM, Farrell K, Kim SH, Bowles KR, Fowkes ME, Raj T et al (2018) High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development. PLoS ONE 13:1–14. https://doi.org/10.1371/journal.pone.0195771

    Article  CAS  Google Scholar 

  26. Hernández F, Merchán-Rubira J, Vallés-Saiz L, Rodríguez-Matellán A, Avila J (2020) Differences between human and murine tau at the N-terminal end. Front Aging Neurosci 12:1–6. https://doi.org/10.3389/fnagi.2020.00011

    Article  CAS  Google Scholar 

  27. Hernández F, Pérez M, de Barreda EG, Goñi-Oliver P, Avila J (2008) Tau as a molecular marker of development, aging and neurodegenerative disorders. Curr Aging Sci 1:56–61. https://doi.org/10.2174/1874609810801010056

    Article  PubMed  Google Scholar 

  28. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5’ -splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998:393

    Google Scholar 

  29. Ingelsson M, Ramasamy K, Cantuti-Castelvetri I, Skoglund L, Matsui T, Orne J et al (2006) No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain. Acta Neuropathol 112:439–449. https://doi.org/10.1007/s00401-006-0095-3

    Article  CAS  PubMed  Google Scholar 

  30. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang Z, Tang H, Havlioglu N, Zhang X, Stamm S, Yan R et al (2003) Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2β. J Biol Chem 278:18997–19007. https://doi.org/10.1074/jbc.M301800200

    Article  CAS  PubMed  Google Scholar 

  32. DeJong S, Chepelev I, Janson E, Strengman E, Van Den Berg LH, Veldink JH et al (2012) Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner. BMC Genomics 13:1. https://doi.org/10.1186/1471-2164-13-458

    Article  CAS  Google Scholar 

  33. Kanai Y, Chen J, Hirokawa N (1992) Microtubule bundling by tau proteins in vivo: analysis of functional domains. EMBO J 11:3953–3961. https://doi.org/10.1002/j.1460-2075.1992.tb05489.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kar A, Havlioglu N, Tarn WY, Wu JY (2006) RBM4 interacts with an intronic element and stimulates tau exon 10 inclusion. J Biol Chem 281:24479–24488. https://doi.org/10.1074/jbc.M603971200

    Article  CAS  PubMed  Google Scholar 

  35. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015. https://doi.org/10.1038/nmeth.1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim WH, Lee S, Hall GF (2010) Secretion of human tau fragments resembling CSF-tau in Alzheimer’s disease is modulated by the presence of the exon 2 insert. FEBS Lett 584:3085–3088. https://doi.org/10.1016/j.febslet.2010.05.042

    Article  CAS  PubMed  Google Scholar 

  37. King ME, Gamblin TC, Kuret J, Binder LI (2000) Differential assembly of human tau isoforms in the presence of arachidonic acid. J Neurochem 74:1749–1757. https://doi.org/10.1046/j.1471-4159.2000.0741749.x

    Article  CAS  PubMed  Google Scholar 

  38. Lai MC, Bechy AL, Denk F, Collins E, Gavriliouk M, Zaugg JB et al (2017) Haplotype-specific MAPT exon 3 expression regulated by common intronic polymorphisms associated with Parkinsonian disorders. Mol Neurodegener 12:1–16. https://doi.org/10.1186/s13024-017-0224-6

    Article  CAS  Google Scholar 

  39. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt214

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  41. Liu C, Götz J (2013) Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE 8:1–18. https://doi.org/10.1371/journal.pone.0084849

    Article  CAS  Google Scholar 

  42. Liu C, Song X, Nisbet R, Götz J (2016) Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease. J Biol Chem 291:8173–8188. https://doi.org/10.1074/jbc.M115.641902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McInnes L, Healy J, Melville J (2018) UMAP: Uniform manifold approximation and projection for dimension reduction. J Open Source Softw 3:861. https://doi.org/10.21105/joss.00861

    Article  Google Scholar 

  44. Morfini GA, Burns M, Binder L, Kanaan NM, Bosco DA, Junior RHB et al (2009) Minisymposium: axonal transport defects in neurodegenerative diseases. J Neurosci 29:12776–12786. https://doi.org/10.1523/JNEUROSCI.3463-09.2009.Minisymposium

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol Brain Res 1:271–280. https://doi.org/10.1016/0169-328X(86)90033-1

    Article  CAS  Google Scholar 

  46. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. https://doi.org/10.1038/nature08909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otero-Garcia M, Xue T-Q, Shakouri T, Deng Y, Morabito S, Allison T et al (2020) Single-soma transcriptomics of tangle-bearing neurons in Alzheimer’s disease reveals the signatures of tau-associated synaptic dysfunction. BioRxiv. https://doi.org/10.1101/2020.05.11.088591

    Article  Google Scholar 

  48. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  49. Pedrotti S, Busà R, Compagnucci C, Sette C (2012) The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res 40:1021–1032. https://doi.org/10.1093/nar/gkr819

    Article  CAS  PubMed  Google Scholar 

  50. Perez Y, Menascu S, Cohen I, Kadir R, Basha O, Shorer Z et al (2018) RSRC1 mutation affects intellect and behaviour through aberrant splicing and transcription, downregulating IGFBP3. Brain 141:961–970. https://doi.org/10.1093/brain/awy045

    Article  PubMed  Google Scholar 

  51. Scala M, Mojarrad M, Riazuddin S, Brigatti KW, Ammous Z, Cohen JS et al (2020) RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability. Brain. https://doi.org/10.1093/brain/awaa070

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharma A, Song W-M, Farrell K, Whitney K, Zhang B, Crary JF et al (2021) Single-cell atlas of progressive supranuclear palsy reveals a distinct hybrid glial cell population. BioRxiv. https://doi.org/10.1101/2021.04.11.439393

    Article  PubMed  PubMed Central  Google Scholar 

  53. Skoglund L, Viitanen M, Kalimo H, Lannfelt L, Jönhagen ME, Ingelsson M et al (2008) The tau S305S mutation causes frontotemporal dementia with parkinsonism. Eur J Neurol 15:156–161. https://doi.org/10.1111/j.1468-1331.2007.02017.x

    Article  CAS  PubMed  Google Scholar 

  54. Spillantini MG, Yoshida H, Rizzini C, Lantos PL, Khan N, Rossor MN et al (2000) A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion. Ann Neurol 48:939–943. https://doi.org/10.1002/1531-8249(200012)48:6%3c932::AID-ANA15%3e3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  55. Stanford PM, Halliday GM, Brooks WS, Kwok JBJ, Storey CE, Creasey H et al (2000) Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene expansion of the disease phenotype caused by tau gene mutations. Brain 2000:880–893

    Article  Google Scholar 

  56. Stefanoska K, Volkerling A, Bertz J, Poljak A, Ke YD, Ittner LM et al (2018) An N-terminal motif unique to primate tau enables differential protein–protein interactions. J Biol Chem 293:3710–3719. https://doi.org/10.1074/jbc.RA118.001784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Storbeck M, Hupperich K, Gaspar JA, Meganathan K, Carrera LM, Wirth R et al (2014) Neuronal-specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain. PLoS ONE. https://doi.org/10.1371/journal.pone.0089020

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM et al (2019) Comprehensive integration of single-cell data. Cell 177:1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C et al (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 21:4094–4103. https://doi.org/10.1093/hmg/dds238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang F, Zhao Y, Hao Y, Tan Z (2008) Identification of low-abundance alternatively spliced mRNA variants by exon exclusive reverse transcriptase polymerase chain reaction. Anal Biochem 383:307–310. https://doi.org/10.1016/j.ab.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Gao L, Tse S-W, Andreadis A (2010) Heterogeneous nuclear ribonucleoprotein E3 modestly activates splicing of tau exon 10 via its proximal downstream intron, a hotspot for frontotemporal dementia mutations. Gene. https://doi.org/10.1038/jid.2014.371

    Article  PubMed  Google Scholar 

  62. Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P et al (2020) Tau PTM profiles identify patient heterogeneity and stages of alzheimer’s disease. Cell 183:1699-1713.e13. https://doi.org/10.1016/j.cell.2020.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu TD, Watanabe CK (2005) Sequence analysis GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875. https://doi.org/10.1093/bioinformatics/bti310

    Article  CAS  PubMed  Google Scholar 

  64. Yu Q, Guo J, Zhou J (2004) A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. J Neurochem 90:164–172. https://doi.org/10.1111/j.1471-4159.2004.02477.x

    Article  CAS  PubMed  Google Scholar 

  65. Zhong Q, Congdon EE, Nagaraja HN, Kuret J (2012) Tau isoform composition influences rate and extent of filament formation. J Biol Chem 287:20711–20719. https://doi.org/10.1074/jbc.M112.364067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the BrightFocus Foundation (KRB), Association for Frontotemporal Degeneration (KRB), CurePSP (KRB), the Rainwater Charitable Foundation (AMG, KRB), and Alzheimer’s Association AARF-17-529888 (JDC). We thank the NIH Neurobiobanks at the University of Maryland, Harvard and Mount Sinai for supplying tissues for analyses. We also thank the Neuropathology brain bank and research CoRE and the Genetics CoRE at the Icahn School of Medicine at Mt. Sinai for supplying tissues and conducting immunohistochemical staining, and for carrying out targeted iso-seq and data analysis. We are grateful to the study participants and their families for their contributions to research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KRB, AMG. Methodology: KRB, DAP, LMO, BMJ, KF, KW, AS, JDC. Validation: KRB, DAP, LMO. Formal analysis: KRB, KF. Investigation: KRB, DAP, LMO. Resources: JDC, TR, KF, KW, JFC, AP, AMG. Data curation: KRB. Writing—original draft: KRB. Writing—review and editing: KRB, DAP, LMO, KF, KW, JDC, JFC, AP, AMG. Visualization: KRB. Supervision: AMG. Funding acquisition: KRB, JFC, AMG.

Corresponding author

Correspondence to Alison M. Goate.

Ethics declarations

Conflict of interests

AMG: Scientific advisory board (SAB) for Denali Therapeutics (2015-2018), SAB for Pfizer (2019), SAB for Genentech, consultant for GSK, AbbVie, Biogen and Eisai. All other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowles, K.R., Pugh, D.A., Oja, LM. et al. Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD. Acta Neuropathol 143, 225–243 (2022). https://doi.org/10.1007/s00401-021-02392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02392-2

Keywords

Navigation