Skip to main content

Advertisement

Log in

Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Macroautophagy is a dynamic process whereby cytoplasmic components are initially sequestered within autophagosomes. Recent studies have shown that the autophagosome membrane can selectively recognize ubiquitinated proteins and organelles through interaction with adapter proteins such as p62 and NBR1. Both proteins are structurally similar at the amino acid level, and bind with ubiquitin and ubiquitinated proteins. Although p62 is incorporated into a wide spectrum of pathological inclusions in various neurodegenerative diseases, abnormalities of NBR1 have not been reported in these diseases. Our immunohistochemical examination revealed that the vast majority of Lewy bodies (LBs) in Parkinson’s disease and dementia with LBs (DLB) as well as of glial cytoplasmic inclusions in multiple system atrophy (MSA) were positive for NBR1. Neuronal and glial inclusions in tauopathies and TAR DNA-binding protein of 43 kDa proteinopathies were rarely immunolabeled, or were unstained. Using cultured cells bearing LB-like inclusions, formation of α-synuclein aggregates was repressed in cells with NBR1 knockdown. Immunoblot analysis showed that the level of NBR1 was significantly increased by 2.5-fold in MSA, but not in DLB. These findings suggest that NBR1 is involved in the formation of cytoplasmic inclusions in α-synucleinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arai T, Nonaka T, Hasegawa M et al (2003) Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62. Neurosci Lett 342:41–44

    Article  PubMed  CAS  Google Scholar 

  2. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  3. Braak H, Del Tredici K, Rub Ü et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  4. Campbell IG, Nicolai HM, Foulkes WD et al (1994) A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum Mol Genet 3:589–594

    Article  PubMed  CAS  Google Scholar 

  5. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  6. Chambers JA, Solomon E (1996) Isolation of the murine Nbr1 gene adjacent to the murine Brca1 gene. Genomics 38:305–313

    Article  PubMed  CAS  Google Scholar 

  7. Crews L, Spencer B, Desplats P et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS ONE 5:e9313

    Article  PubMed  Google Scholar 

  8. D’Agostino C, Nogalska A, Cacciottolo M et al (2011) Abnormalities of NBR1, a novel autophagy-associated protein, in muscle fibers of sporadic inclusion-body myositis. Acta Neuropathol 122:627–636

    Article  PubMed  Google Scholar 

  9. Engelender S, Kaminsky Z, Guo X et al (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22:110–114

    Article  PubMed  CAS  Google Scholar 

  10. Higashi S, Moore DJ, Minegishi M et al (2011) Localization of MAP1-LC3 in vulnerable neurons and Lewy bodies in brains of patients with dementia with Lewy bodies. J Neuropathol Exp Neurol 70:264–280

    Article  PubMed  CAS  Google Scholar 

  11. Hocking LJ, Lucas GJ, Daroszewska A et al (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–2739

    Article  PubMed  CAS  Google Scholar 

  12. Itakura E, Mizushima N (2011) p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192:17–27

    Article  PubMed  CAS  Google Scholar 

  13. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  Google Scholar 

  14. Johnson-Pais TL, Wisdom JH, Weldon KS et al (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18:1748–1753

    Article  PubMed  CAS  Google Scholar 

  15. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  16. Kawaguchi Y, Kovacs JJ, McLaurin A et al (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  PubMed  CAS  Google Scholar 

  17. Kirkin V, Lamark T, Sou YS et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  PubMed  CAS  Google Scholar 

  18. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  PubMed  CAS  Google Scholar 

  19. Kuusisto E, Kauppinen T, Alafuzoff I (2008) Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol 34:169–180

    Article  PubMed  CAS  Google Scholar 

  20. Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. NeuroReport 12:2085–2090

    Article  PubMed  CAS  Google Scholar 

  21. Lange S, Xiang F, Yakovenko A et al (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603

    Article  PubMed  CAS  Google Scholar 

  22. Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    Article  PubMed  CAS  Google Scholar 

  23. Lee BR, Kamitani T (2011) Improved immunodetection of endogenous alpha-synuclein. PLoS ONE 6:e23939

    Article  PubMed  CAS  Google Scholar 

  24. Lippa CF, Fujiwara H, Mann DM et al (1998) Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153:1365–1370

    Article  PubMed  CAS  Google Scholar 

  25. Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113

    Article  PubMed  Google Scholar 

  26. Mardakheh FK, Yekezare M, Machesky LM, Heath JK (2009) Spred2 interaction with the late endosomal protein NBR1 down-regulates fibroblast growth factor receptor signaling. J Cell Biol 187:265–277

    Article  PubMed  CAS  Google Scholar 

  27. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    Article  PubMed  CAS  Google Scholar 

  28. Miki Y, Mori F, Tanji K et al (2011) Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions. Neuropathology 31:561–568

    Article  PubMed  Google Scholar 

  29. Nakano T, Nakaso K, Nakashima K, Ohama E (2004) Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol 107:359–364

    Article  PubMed  CAS  Google Scholar 

  30. Nishie M, Mori F, Fujiwara H et al (2004) Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol 107:292–298

    Article  PubMed  CAS  Google Scholar 

  31. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978

    Article  PubMed  Google Scholar 

  32. Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  PubMed  CAS  Google Scholar 

  33. Stumptner C, Heid H, Fuchsbichler A et al (1999) Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Am J Pathol 154:1701–1710

    Article  PubMed  CAS  Google Scholar 

  34. Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7:993–1010

    Article  PubMed  CAS  Google Scholar 

  35. Tanji K, Kamitani T, Mori F et al (2010) TRIM9, a novel brain-specific E3 ubiquitin ligase, is repressed in the brain of Parkinson’s disease and dementia with Lewy bodies. Neurobiol Dis 38:210–218

    Article  PubMed  CAS  Google Scholar 

  36. Tanji K, Mori F, Kakita A et al (2011) Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 43:690–697

    Article  PubMed  CAS  Google Scholar 

  37. Tanji K, Mori F, Mimura J et al (2010) Proteinase K-resistant alpha-synuclein is deposited in presynapses in human Lewy body disease and A53T alpha-synuclein transgenic mice. Acta Neuropathol 120:145–154

    Article  PubMed  CAS  Google Scholar 

  38. Tanji K, Tanaka T, Mori F et al (2006) NUB1 suppresses the formation of Lewy body-like inclusions by proteasomal degradation of synphilin-1. Am J Pathol 169:553–565

    Article  PubMed  CAS  Google Scholar 

  39. Wakabayashi K, Hayashi S, Kakita A et al (1998) Accumulation of alpha-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol 96:445–452

    Article  PubMed  CAS  Google Scholar 

  40. Wakabayashi K, Hayashi S, Yoshimoto M et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol (Berl) 99:14–20

    Article  CAS  Google Scholar 

  41. Waters S, Marchbank K, Solomon E et al (2009) Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett 583:1846–1852

    Article  PubMed  CAS  Google Scholar 

  42. Whitehouse C, Chambers J, Howe K et al (2002) NBR1 interacts with fasciculation and elongation protein zeta-1 (FEZ1) and calcium and integrin binding protein (CIB) and shows developmentally restricted expression in the neural tube. Eur J Biochem 269:538–545

    Article  PubMed  CAS  Google Scholar 

  43. Whitehouse CA, Waters S, Marchbank K et al (2010) Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci USA 107:12913–12918

    Article  PubMed  CAS  Google Scholar 

  44. Yip KH, Feng H, Pavlos NJ et al (2006) p62 ubiquitin binding-associated domain mediated the receptor activator of nuclear factor-kappaB ligand-induced osteoclast formation: a new insight into the pathogenesis of Paget’s disease of bone. Am J Pathol 169:503–514

    Article  PubMed  CAS  Google Scholar 

  45. Zhang HX, Tanji K, Mori F, Wakabayashi K (2008) Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43. Neurosci Lett 434:170–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid 23500425 (K.T.), 23500424 (F.M.), and 20300123 (K.W.) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, a Grant for Hirosaki University Institutional Research (K.W.), the Collaborative Research Project (2011-2209) of the Brain Research Institute, Niigata University (F.M.), Grants-in Aid from the Research Committee for Ataxic Disease, the Ministry of Health, Labor, and Welfare, Japan (K.W.), and an Intramural Research Grant (21B-4) for Neurological and Psychiatric Disorders of NCNP (K.W.). The authors wish to express their gratitude to M. Nakata for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunikazu Tanji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odagiri, S., Tanji, K., Mori, F. et al. Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy. Acta Neuropathol 124, 173–186 (2012). https://doi.org/10.1007/s00401-012-0975-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-0975-7

Keywords

Navigation