Skip to main content

Advertisement

Log in

Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity?

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS), the most frequent demyelinating disease, is characterized by a variable disease course. The majority of patients starts with relapsing remitting (RR) disease; approximately 50–60% of these patients progress to secondary progressive (SP) disease. Only about 15% of the patients develop a progressive disease course from onset, termed primary progressive multiple sclerosis (PPMS); the underlying pathogenic mechanisms responsible for onset of the disease with either PPMS or relapsing remitting multiple sclerosis (RRMS) are unknown. Patients with PPMS do not show a female predominance and usually have a later onset of disease compared to patients with RRMS. Monozygous twins can be concordant or discordant for disease courses indicating that the disease course is not only genetically determined. Primary progressive multiple sclerosis and secondary progressive multiple sclerosis (SPMS) share many similarities in imaging and pathological findings. Differences observed among the different disease courses are more of a quantitative than qualitative nature suggesting that the different phenotypes are part of a disease spectrum modulated by individual genetic predisposition and environmental influences. In this review, we summarize the knowledge regarding the clinical, epidemiological, imaging, and pathological characteristics of PPMS and compare those characteristics with RRMS and SPMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agosta F, Absinta M, Sormani MP et al (2007) In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain 130:2211–2219

    Article  PubMed  CAS  Google Scholar 

  2. Agosta F, Benedetti B, Rocca MA et al (2005) Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology 64:631–635

    Article  PubMed  CAS  Google Scholar 

  3. Albert M, Antel J, Bruck W et al (2007) Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol 17:129–138

    Article  PubMed  Google Scholar 

  4. Aulchenko YS, Hoppenbrouwers IA, Ramagopalan SV et al (2008) Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet 40:1402–1403

    Article  PubMed  CAS  Google Scholar 

  5. Barkhof F, Bruck W, De Groot CJ et al (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081

    Article  PubMed  Google Scholar 

  6. Bieniek M, Altmann DR, Davies GR et al (2006) Cord atrophy separates early primary progressive and relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 77:1036–1039

    Article  PubMed  CAS  Google Scholar 

  7. Bjartmar C, Kinkel PR, Kidd G et al (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252

    PubMed  CAS  Google Scholar 

  8. Booth DR, Heard RN, Stewart GJ et al (2010) Lack of support for association between the KIF1B rs10492972[C] variant and multiple sclerosis. Nat Genet 42:469–470

    Article  PubMed  CAS  Google Scholar 

  9. Bramow S, Frischer JM, Lassmann H et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133:2983–2998

    Article  PubMed  Google Scholar 

  10. Burwick RM, Ramsay PP, Haines JL et al (2006) APOE epsilon variation in multiple sclerosis susceptibility and disease severity: some answers. Neurology 66:1373–1383

    Article  PubMed  CAS  Google Scholar 

  11. Calabrese M, Battaglini M, Giorgio A et al (2010) Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology 75:1234–1240

    Article  PubMed  CAS  Google Scholar 

  12. Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6:438–444

    Article  PubMed  Google Scholar 

  13. Caramanos Z, Narayanan S, Arnold DL (2005) 1H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 128:2483–2506

    Article  PubMed  Google Scholar 

  14. Ceccarelli A, Rocca MA, Pagani E et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42:315–322

    Article  PubMed  Google Scholar 

  15. Ceccarelli A, Rocca MA, Valsasina P et al (2009) A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis. Hum Brain Mapp 30:3009–3019

    Article  PubMed  Google Scholar 

  16. Chapman J, Vinokurov S, Achiron A et al (2001) APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 56:312–316

    PubMed  CAS  Google Scholar 

  17. Chataway J, Mander A, Robertson S et al (2001) Multiple sclerosis in sibling pairs: an analysis of 250 families. J Neurol Neurosurg Psychiatry 71:757–761

    Article  PubMed  CAS  Google Scholar 

  18. Chen JT, Collins DL, Atkins HL et al (2008) Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63:254–262

    Article  PubMed  Google Scholar 

  19. Chen JT, Kuhlmann T, Jansen GH et al (2007) Voxel-based analysis of the evolution of magnetization transfer ratio to quantify remyelination and demyelination with histopathological validation in a multiple sclerosis lesion. Neuroimage 36:1152–1158

    Article  PubMed  CAS  Google Scholar 

  20. Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129:595–605

    Article  PubMed  Google Scholar 

  21. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  22. Dehmeshki J, Chard DT, Leary SM et al (2003) The normal-appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 250:67–74

    Article  PubMed  CAS  Google Scholar 

  23. Di PC, Battaglini M, Stromillo ML et al (2008) Voxel-based assessment of differences in damage and distribution of white matter lesions between patients with primary progressive and relapsing-remitting multiple sclerosis. Arch Neurol 65:236–243

    Article  Google Scholar 

  24. Dutta R, Chang A, Doud MK et al (2011) Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol 69:445–454

    Article  PubMed  CAS  Google Scholar 

  25. Fisher E, Rudick RA, Cutter G et al (2000) Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler 6:373–377

    PubMed  CAS  Google Scholar 

  26. Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  Google Scholar 

  27. Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 25:459–467

    Article  PubMed  CAS  Google Scholar 

  28. Ge Y, Grossman RI, Udupa JK et al (2000) Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 214:665–670

    PubMed  CAS  Google Scholar 

  29. Geurts JJ, Reuling IE, Vrenken H et al (2006) MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn Reson Med 55:478–483

    Article  PubMed  CAS  Google Scholar 

  30. Gilmore CP, Donaldson I, Bo L et al (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187

    Article  PubMed  CAS  Google Scholar 

  31. Goldschmidt T, Antel J, Konig FB et al (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72:1914–1921

    Article  PubMed  CAS  Google Scholar 

  32. Goodman AD, Brown TR, Edwards KR et al (2010) A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol 68:494–502

    Article  PubMed  CAS  Google Scholar 

  33. Hawker K (2011) Progressive multiple sclerosis: characteristics and management. Neurol Clin 29:423–434

    Article  PubMed  Google Scholar 

  34. Hawker K, O’Connor P, Freedman MS et al (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66:460–471

    Article  PubMed  CAS  Google Scholar 

  35. Hochmeister S, Grundtner R, Bauer J et al (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865

    Article  PubMed  CAS  Google Scholar 

  36. Hohlfeld R (2004) Immunologic factors in primary progressive multiple sclerosis. Mult Scler 10(Suppl 1):S16–S21

    Article  PubMed  CAS  Google Scholar 

  37. Ingle GT, Stevenson VL, Miller DH et al (2003) Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 126:2528–2536

    Article  PubMed  CAS  Google Scholar 

  38. Inglese M, Ghezzi A, Bianchi S et al (2002) Irreversible disability and tissue loss in multiple sclerosis. A conventional and magnetization transfer magnetic resonance imaging study of the optic nerves. Arch Neurol 59:250–255

    Article  PubMed  Google Scholar 

  39. Inglese M, van Waesberghe JH, Rovaris M et al (2003) The effect of interferon beta-1b on quantities derived from MT MRI in secondary progressive MS. Neurology 60:853–860

    PubMed  CAS  Google Scholar 

  40. Kapoor R, Furby J, Hayton T et al (2010) Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 9:681–688

    Article  PubMed  CAS  Google Scholar 

  41. Khaleeli Z, Cercignani M, Audoin B et al (2007) Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability. Neuroimage 37:253–261

    Article  PubMed  CAS  Google Scholar 

  42. Khaleeli Z, Ciccarelli O, Manfredonia F et al (2008) Predicting progression in primary progressive multiple sclerosis: a 10-year multicenter study. Ann Neurol 63:790–793

    Article  PubMed  Google Scholar 

  43. Kidd D, Thorpe JW, Kendall BE et al (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60:15–19

    Article  PubMed  CAS  Google Scholar 

  44. Kremenchutzky M, Rice GP, Baskerville J et al (2006) The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain 129:584–594

    Article  PubMed  CAS  Google Scholar 

  45. Kuhlmann T, Lingfeld G, Bitsch A et al (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  46. Kutzelnigg A, Faber-Rod JC, Bauer J et al (2007) Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17:38–44

    Article  PubMed  Google Scholar 

  47. Kutzelnigg A, Lucchinetti CF, Stadelmann C et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  48. Lassmann H (2008) The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin N Am 18:563–576 (ix)

    Article  PubMed  Google Scholar 

  49. Laule C, Vavasour IM, Zhao Y et al (2010) Two-year study of cervical cord volume and myelin water in primary progressive multiple sclerosis. Mult Scler 16:670–677

    Article  PubMed  CAS  Google Scholar 

  50. Leary SM, Davie CA, Parker GJM et al (1999) 1H magnetic resonance spectroscopy of normal-appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026

    Article  PubMed  CAS  Google Scholar 

  51. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911

    PubMed  CAS  Google Scholar 

  52. Magliozzi R, Howell O, Vora A et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130:1089–1104

    Article  PubMed  Google Scholar 

  53. Magliozzi R, Howell OW, Reeves C et al (2010) A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68:477–493

    Article  PubMed  CAS  Google Scholar 

  54. Marshall J (1955) Spastic paraplegia of middle age; a clinicopathological study. Lancet 268:643–646

    Article  PubMed  CAS  Google Scholar 

  55. Martino G, Franklin RJ, Van Evercooren AB et al (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6:247–255

    Article  PubMed  Google Scholar 

  56. McAlpine D (1972) Multiple sclerosis: a reappraisal. In: McAlpine D, Lumsden CE, Acheson ED (eds) Diagnosis and classification of multiple sclerosis, 2nd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  57. McDonald WI, Halliday AM (1977) Diagnosis and classification of multiple sclerosis. Br Med Bull 33:4–9

    PubMed  CAS  Google Scholar 

  58. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  PubMed  CAS  Google Scholar 

  59. Mews I, Bergmann M, Bunkowski S et al (1998) Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler 4:55–62

    PubMed  CAS  Google Scholar 

  60. Narayana PA, Wolinsky JS, Rao SB et al (2004) Multicentre proton magnetic resonance spectroscopy imaging of primary progressive multiple sclerosis. Mult Scler 10(Suppl 1):S73–S78

    Article  PubMed  Google Scholar 

  61. Noseworthy JH, Lucchinetti C, Rodriguez M et al (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  62. Oh J, Pelletier D, Nelson SJ (2004) Corpus callosum axonal injury in multiple sclerosis measured by proton magnetic resonance spectroscopic imaging. Arch Neurol 61:1081–1086

    Article  PubMed  Google Scholar 

  63. Patani R, Balaratnam M, Vora A et al (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287

    Article  PubMed  CAS  Google Scholar 

  64. Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    Article  PubMed  Google Scholar 

  65. Penny S, Khaleeli Z, Cipolotti L et al (2010) Early imaging predicts later cognitive impairment in primary progressive multiple sclerosis. Neurology 74:545–552

    Article  PubMed  CAS  Google Scholar 

  66. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  Google Scholar 

  67. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31

    Article  PubMed  CAS  Google Scholar 

  68. Quintana FJ, Farez MF, Viglietta V et al (2008) Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci USA 105:18889–18894

    Article  PubMed  CAS  Google Scholar 

  69. Ramio-Torrenta L, Sastre-Garriga J, Ingle GT et al (2006) Abnormalities in normal-appearing tissues in early primary progressive multiple sclerosis and their relation to disability: a tissue specific magnetisation transfer study. J Neurol Neurosurg Psychiatry 77:40–45

    Article  PubMed  CAS  Google Scholar 

  70. Revesz T, Kidd D, Thompson AJ et al (1994) A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain 117:759–765

    Article  PubMed  Google Scholar 

  71. Rovaris M, Gallo A, Falini A et al (2005) Axonal injury and overall tissue loss are not related in primary progressive multiple sclerosis. Arch Neurol 62:898–902

    Article  PubMed  Google Scholar 

  72. Rovaris M, Gallo A, Valsasina P et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24:1139–1146

    Article  PubMed  Google Scholar 

  73. Rovaris M, Judica E, Sastre-Garriga J et al (2008) Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Mult Scler 14:455–464

    Article  PubMed  Google Scholar 

  74. Sastre-Garriga J, Ingle GT, Chard DT et al (2005) Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain 128:1454–1460

    Article  PubMed  Google Scholar 

  75. Sastre-Garriga J, Ingle GT, Chard DT et al (2004) Grey and white matter atrophy in early clinical stages of primary progressive multiple sclerosis. Neuroimage 22:353–359

    Article  PubMed  Google Scholar 

  76. Sastre-Garriga J, Ingle GT, Rovaris M et al (2005) Long-term clinical outcome of primary progressive MS: predictive value of clinical and MRI data. Neurology 65:633–635

    Article  PubMed  CAS  Google Scholar 

  77. Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  PubMed  CAS  Google Scholar 

  78. Sepulcre J, Sastre-Garriga J, Cercignani M et al (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63:1175–1180

    Article  PubMed  Google Scholar 

  79. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  80. Smith KJ (1994) Conduction properties of central demyelinated and remyelinated axons, and their relation to symptom production in demyelinating disorders. Eye 8:224–237

    Article  PubMed  Google Scholar 

  81. Stevenson VL, Miller DH, Rovaris M et al (1999) Primary and transitional progressive MS: a clinical and MRI cross-sectional study. Neurology 52:839–845

    PubMed  CAS  Google Scholar 

  82. Suhy J, Rooney WD, Goodkin DE et al (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6:148–155

    PubMed  CAS  Google Scholar 

  83. Tallantyre EC, Bo L, Al-Rawashdeh O et al (2009) Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain 132:1190–1199

    Article  PubMed  CAS  Google Scholar 

  84. Tallantyre EC, Bo L, Al-Rawashdeh O et al (2010) Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult Scler 16:406–411

    Article  PubMed  Google Scholar 

  85. Thompson AJ, Kermode AG, MacManus DG et al (1990) Patterns of disease activity in mutliple sclerosis: clinical and magnetic resonance imaging study. Br Med J 300:631–634

    Article  CAS  Google Scholar 

  86. Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62

    Article  PubMed  CAS  Google Scholar 

  87. Thompson AJ, Montalban X, Barkhof F et al (2000) Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Ann Neurol 47:831–835

    Article  PubMed  CAS  Google Scholar 

  88. Tur C, Penny S, Khaleeli Z et al (2011) Grey matter damage and overall cognitive impairment in primary progressive multiple sclerosis. Mult Scler 17(11):1324–1332

    Article  PubMed  CAS  Google Scholar 

  89. Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10:649–656

    Article  PubMed  CAS  Google Scholar 

  90. Ukkonen M, Dastidar P, Heinonen T et al (2003) Volumetric quantitation by MRI in primary progressive multiple sclerosis: volumes of plaques and atrophy correlated with neurological disability. Eur J Neurol 10:663–669

    Article  PubMed  CAS  Google Scholar 

  91. Vrenken H, Barkhof F, Uitdehaag BM et al (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266

    Article  PubMed  CAS  Google Scholar 

  92. Vrenken H, Geurts JJ (2007) Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective. Expert Rev Neurother 7:271–279

    Article  PubMed  Google Scholar 

  93. Wegner C, Esiri MM, Chance SA et al (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967

    Article  PubMed  CAS  Google Scholar 

  94. Weinshenker BG, Bass B, Rice GP et al (1989) The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112:133–146

    Article  PubMed  Google Scholar 

  95. Wolinsky JS (2004) The PROMiSe trial: baseline data review and progress report. Mult Scler 10(Suppl 1):S65–S71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. David Arauju and Mr. Mishkin Derakhshan, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University who provided some of the imaging figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jack Antel or Tanja Kuhlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antel, J., Antel, S., Caramanos, Z. et al. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity?. Acta Neuropathol 123, 627–638 (2012). https://doi.org/10.1007/s00401-012-0953-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-0953-0

Keywords

Navigation