Skip to main content

Advertisement

Log in

Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler’s murine encephalomyelitis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are a family of extracellular proteases involved in the pathogenesis of demyelinating diseases like multiple sclerosis (MS). The aim of the present study was to investigate whether MMPs induce direct myelin degradation, leukocyte infiltration, disruption of the blood–brain barrier (BBB), and/or extracellular matrix remodeling in the pathogenesis of Theiler’s murine encephalomyelitis (TME), a virus-induced model of MS. During the demyelinating phase of TME, the highest transcriptional upregulation was detected for Mmp12, followed by Mmp3. Mmp12 / mice showed reduced demyelination, macrophage infiltration, and motor deficits compared with wild-type- and Mmp3 knock-out mice. However, BBB remained unaltered, and the amount of extracellular matrix deposition was similar in knock-out mice and wild-type mice. Furthermore, stereotaxic injection of activated MMP-3, -9, and -12 into the caudal cerebellar peduncle of adult mice induced a focally extensive primary demyelination prior to infiltration of inflammatory cells, as well as a reduction in the number of oligodendrocytes and a leakage of BBB. All these results demonstrate that MMP-12 plays an essential role in the pathogenesis of TME, most likely due to its primary myelin- or oligodendrocyte-toxic potential and its role in macrophage extravasation, whereas there was no sign of BBB damage or alterations to extracellular matrix remodeling/deposition. Thus, interrupting the MMP-12 cascade may be a relevant therapeutic approach for preventing chronic progressive demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams RA, Bauer J, Flick MJ et al (2007) The fibrin-derived gamma 377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal SM, Lau L, Yong VW (2008) MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol 19:42–51

    Article  PubMed  CAS  Google Scholar 

  3. Anthony DC, Miller KM, Fearn S et al (1998) Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. J Neuroimmunol 87:62–72

    Article  PubMed  CAS  Google Scholar 

  4. Asahi M, Wang XY, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    Google Scholar 

  5. Bar-Or A (2008) The immunology of multiple sclerosis. Semin Neurol 28:29–45

    Article  PubMed  Google Scholar 

  6. Bar-Or A, Nuttall RK, Duddy M et al (2003) Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126:2738–2749

    Article  PubMed  Google Scholar 

  7. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood–spinal cord barrier: morphology and clinical implications. Ann Neurol 70:194–206

    Google Scholar 

  8. Bhat RV, Axt KJ, Fosnaugh JS et al (1996) Expression of the APC tumor suppressor protein in oligodendroglia. Glia 17:169–174

    Article  PubMed  CAS  Google Scholar 

  9. Canales RD, Luo Y, Willey JC et al (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24:1115–1122

    Article  PubMed  CAS  Google Scholar 

  10. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423

    Article  PubMed  CAS  Google Scholar 

  11. Chamorro M, Aubert C, Brahic M (1986) Demyelinating lesions due to Theiler’s virus are associated with ongoing central nervous system infection. J Virol 57:992–997

    PubMed  CAS  Google Scholar 

  12. Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201:223–226

    Article  PubMed  CAS  Google Scholar 

  13. Chandler S, Cossins J, Lury J, Wells G (1996) Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun 228:421–429

    Google Scholar 

  14. Clements JM, Cossins JA, Wells GM et al (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74:85–94

    Article  PubMed  CAS  Google Scholar 

  15. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  CAS  Google Scholar 

  16. Dal Canto MC, Kim BS, Miller SD, Melvold RW (1996) Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination: a model for human multiple sclerosis. Methods 10:453–461

    Article  PubMed  CAS  Google Scholar 

  17. Dal Canto MC, Lipton HL (1982) Ultrastructural immunohistochemical localization of virus in acute and chronic demyelinating Theiler’s virus infection. Am J Pathol 106:20–29

    PubMed  CAS  Google Scholar 

  18. Dallas PB, Gottardo NG, Firth MJ et al (2005) Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genomics 6:59–69

    Article  PubMed  Google Scholar 

  19. Del Valle J, Camins A, Pallas M, Vilaplana J, Pelegri C (2008) A new method for determining blood–brain barrier integrity based on intracardiac perfusion of an Evans Blue–Hoechst cocktail. J Neurosci Methods 174:42–49

    Google Scholar 

  20. Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803:3–19

    Article  PubMed  CAS  Google Scholar 

  21. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004

    Article  PubMed  CAS  Google Scholar 

  22. Gerhauser I, Ulrich R, Alldinger S, Baumgärtner W (2007) Induction of activator protein-1 and nuclear factor-kappaB as a prerequisite for disease development in susceptible SJL/J mice after Theiler murine encephalomyelitis. J Neuropathol Exp Neurol 66:809–818

    Article  PubMed  CAS  Google Scholar 

  23. Goncalves Dasilva A, Yong VW (2008) Expression and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro. J Neuroimmunol 199:24–34

    Article  Google Scholar 

  24. Goncalves DaSilva A, Yong VW (2009) Matrix metalloproteinase-12 deficiency worsens relapsing-remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation. Am J Pathol 174:898–909

    Article  PubMed  CAS  Google Scholar 

  25. Gröters S, Alldinger S, Baumgärtner W (2005) Up-regulation of mRNA for matrix metalloproteinases-9 and -14 in advanced lesions of demyelinating canine distemper leukoencephalitis. Acta Neuropathol 110:369–382

    Google Scholar 

  26. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96

    Google Scholar 

  27. Haist V, Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W (2011) Distinct spatio-temporal extracellular matrix accumulation within demyelinated spinal cord lesions in Theiler’s murine encephalomyelitis. Brain Pathol. doi:10.1111/j.1750-3639.2011.00518.x

  28. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26:2120–2126

    Article  PubMed  CAS  Google Scholar 

  29. Hansmann F, Herder V, Ernst H, Baumgärtner W (2011) Spinal epidermoid cyst in a SJL mouse: case report and literature review. J Comp Pathol 145:373–377

    Article  PubMed  CAS  Google Scholar 

  30. Hansmann F, Pringproa K, Ulrich R et al (2011) Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and non-demyelinated central nervous system. Cell Transplant (accepted)

  31. Harkness KA, Adamson P, Sussman JD, Davies-Jones GAB, Greenwood J, Woodroofe MN (2000) Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 123:698–709

    Article  PubMed  Google Scholar 

  32. Herder V, Hansmann F, Stangel M, Skripuletz T, Baumgärtner W, Beineke A (2011) Lack of cuprizone-induced demyelination in the murine spinal cord despite oligodendroglial alterations substantiates the concept of site-specific susceptibilities of the central nervous system. Neuropathol Appl Neurobiol 37:676–684

    Article  PubMed  CAS  Google Scholar 

  33. Hewson AK, Smith T, Leonard JP, Cuzner ML (1995) Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790. Inflamm Res 44:345–349

    Article  PubMed  CAS  Google Scholar 

  34. Ho MK, Springer TA (1983) Tissue distribution, structural characterization, and biosynthesis of Mac-3, a macrophage surface glycoprotein exhibiting molecular weight heterogeneity. J Biol Chem 258:636–642

    PubMed  CAS  Google Scholar 

  35. Jucker M, Tian M, Ingram DK (1996) Laminins in the adult and aged brain. Mol Chem Neuropathol 28:209–218

    Article  PubMed  CAS  Google Scholar 

  36. Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A (2009) Generation and characterization of a polyclonal antibody for the detection of Theiler’s murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185–188

    Article  PubMed  CAS  Google Scholar 

  37. Kumnok J, Ulrich R, Wewetzer K et al (2008) Differential transcription of matrix-metalloproteinase genes in primary mouse astrocytes and microglia infected with Theiler’s murine encephalomyelitis virus. J. Neurovirol 14:205–217

    Article  PubMed  CAS  Google Scholar 

  38. Lee MA, Palace J, Stabler G, Ford J, Gearing A, Miller K (1999) Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis—a longitudinal clinical and MRI study. Brain 122:191–197

    Article  PubMed  Google Scholar 

  39. Lindberg RLP, De Groot CJA, Montagne L et al (2001) The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain 124:1743–1753

    Article  PubMed  CAS  Google Scholar 

  40. Lo EH, Wang XY, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9

    Article  PubMed  CAS  Google Scholar 

  41. Miao Q, Baumgärtner W, Failing K, Alldinger S (2003) Phase-dependent expression of matrix metalloproteinases and their inhibitors in demyelinating canine distemper encephalitis. Acta Neuropathol 106:486–494

    Article  PubMed  CAS  Google Scholar 

  42. Mudgett JS, Hutchinson NI, Chartrain NA et al (1998) Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum 41:110–121

    Article  PubMed  CAS  Google Scholar 

  43. Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA (2002) The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinforma 3:17

    Article  Google Scholar 

  44. Navarrete-Talloni MJ, Kalkuhl A, Deschl U et al (2010) Transient peripheral immune response and central nervous system leaky compartmentalization in a viral model for multiple sclerosis. Brain Pathol 20:890–901

    PubMed  CAS  Google Scholar 

  45. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152:729–741

    PubMed  CAS  Google Scholar 

  46. Prendergast CT, Anderton SM (2009) Immune cell entry to central nervous system—current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 9:315–327

    Google Scholar 

  47. Rodriguez M, Rivera-Quinones C, Murray PD, Kariuki Njenga M, Wettstein PJ, Mak T (1997) The role of CD4+ and CD8+ T cells in demyelinating disease following Theiler’s virus infection: a model for multiple sclerosis. J Neurovirol 3(Suppl 1):43–45

    Google Scholar 

  48. Romeis B, Böck P (1989) Azanfärbung nach Heidenhain. In: Romeis B, Böck P (eds) Mikroskopische Technik. Urban & Fischer, Munich, p 501

  49. Rosenberg GA (2002) Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 8:586–595

    Article  PubMed  CAS  Google Scholar 

  50. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  51. Rosenberg GA (2005) Matrix metalloproteinases biomarkers in multiple sclerosis. Lancet 365:1291–1293

    Article  PubMed  Google Scholar 

  52. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  PubMed  CAS  Google Scholar 

  53. Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8:41–49

    Article  PubMed  CAS  Google Scholar 

  54. Sato F, Tanaka H, Hasanovic F, Tsunoda I (2011) Theiler’s virus infection: pathophysiology of demyelination and neurodegeneration. Pathophysiology 18:31–41

    Article  PubMed  CAS  Google Scholar 

  55. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 93:3942–3946

    Article  PubMed  CAS  Google Scholar 

  56. Si-Tayeb K, Monvoisin A, Mazzocco C et al (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169:1390–1401

    Article  PubMed  CAS  Google Scholar 

  57. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–946

    Google Scholar 

  58. Skuljec J, Gudi V, Ulrich R et al (2011) Matrix metalloproteinases and their tissue inhibitors in cuprizone-induced demyelination and remyelination of brain white and gray matter. J Neuropathol Exp Neurol 70:758–769

    PubMed  CAS  Google Scholar 

  59. Sobel RA (2001) The extracellular matrix in multiple sclerosis: an update. Braz J Med Biol Res 34:603–609

    Article  PubMed  CAS  Google Scholar 

  60. Teesalu T, Hinkkanen AE, Vaheri A (2001) Coordinated induction of extracellular proteolysis systems during experimental autoimmune encephalomyelitis in mice. Am J Pathol 159:2227–2237

    Article  PubMed  CAS  Google Scholar 

  61. Toft-Hansen H, Nuttall RK, Edwards DR, Owens T (2004) Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 173:5209–5218

    PubMed  CAS  Google Scholar 

  62. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  63. Ulrich R, Baumgärtner W, Gerhauser I et al (2006) MMP-12. MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating Theiler murine encephalomyelitis. J Neuropathol Exp Neurol 65:783–793

    Article  PubMed  CAS  Google Scholar 

  64. Ulrich R, Gerhauser I, Seeliger F, Baumgärtner W, Alldinger S (2005) Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev Neurosci 27:408–418

    Article  PubMed  CAS  Google Scholar 

  65. Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W (2010) Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434–448

    Article  PubMed  CAS  Google Scholar 

  66. Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W (2008) Limited remyelination in Theiler’s murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603–620

    Article  PubMed  CAS  Google Scholar 

  67. van Horssen J, Bo L, Vos CM, Virtanen I, de Vries HE (2005) Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 64:722–729

    Article  PubMed  Google Scholar 

  68. van Horssen J, Dijkstra CD, de Vries HE (2007) The extracellular matrix in multiple sclerosis pathology. J Neurochem 103:1293–1301

    Article  PubMed  Google Scholar 

  69. Vos CMP, van Haastert ES, de Groot CJA, van der Valk P, de Vries HE (2003) Matrix metalloproteinase-12 is expressed in phagocytotic macrophages in active multiple sclerosis lesions. J Neuroimmunol 138:106–114

    Article  PubMed  CAS  Google Scholar 

  70. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  71. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  PubMed  CAS  Google Scholar 

  72. Yong VW, Zabad RK, Agrawal S, Goncalves Dasilva A, Metz LM (2007) Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. J Neurol Sci 259:79–84

    Article  PubMed  CAS  Google Scholar 

  73. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30:e48

    Article  PubMed  Google Scholar 

  74. Zhou J, Marten NW, Bergmann CC, Macklin WB, Hinton DR, Stohlman SA (2005) Expression of matrix metalloproteinases and their tissue inhibitor during viral encephalitis. J Virol 79:4764–4773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bettina Buck, Thomas Feidl, Martin Gamber, Petra Grünig, Michael Müller, Kerstin Rohn, Caroline Schütz, Anuschka Unold, and Heinz Theobald for excellent technical assistance. Furthermore, we are grateful to Dr. Karl Rohn, Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Germany, for statistical assistance; Prof. Christiane Pfarrer, Department of Anatomy, University of Veterinary Medicine Hannover, Germany for providing the fluorescence microscope; Dr. Maren Luchtefeld, Department of Cardiology and Angiology, Hannover Medical School, Germany for providing the fluorescence reader; Prof. Klaus Schughart, Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany for help with planning the cross-breeding of the Mmp knockout animals; and Frances Sherwood-Brock for her helpful comments on the manuscript. The BeAn strain of TMEV was a generous gift of Dr. Howard L. Lipton, Department of Microbiology–Immunology, University of Illinois, Chicago, USA. Florian Hansmann and Vanessa Herder were supported by scholarships from the National Academic Research Foundation (Germany) or the Ministry of Lower Saxony (Germany), respectively. Reiner Ulrich received a grant from the Centre for Systems Neuroscience Hannover (Germany). The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Baumgärtner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 includes the primer sequences and reaction conditions used for qPCR. Supplementary Table 2 and Supplementary Fig. 1 show the transcriptional changes related to the canonical Metacore™ cell adhesion and extracellular matrix-remodeling pathway. The canonical cell adhesion and ECM remodeling map was taken from the Metacore™ database (GeneGo, St. Joseph, MO, USA). Supplementary Table 3 shows probe sets, official gene symbols, and fold changes along with the respective p-values of all Mmps and Timps included in the Affymetrix mouse genome 430 2.0 array. Supplementary Table 4 displays a comparison of the fold changes detected by gene-expression microarray and RT-qPCR, respectively.

Supplementary material 1 (JPEG 413 kb)

Supplementary material 2 (PDF 33 kb)

Supplementary material 3 (PDF 71 kb)

Supplementary material 4 (PDF 82 kb)

Supplementary material 5 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansmann, F., Herder, V., Kalkuhl, A. et al. Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler’s murine encephalomyelitis. Acta Neuropathol 124, 127–142 (2012). https://doi.org/10.1007/s00401-012-0942-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-0942-3

Keywords

Navigation