Skip to main content

Advertisement

Log in

Contribution of systemic inflammation to chronic neurodegeneration

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Systemic infection or inflammation gives rise to signals that communicate with the brain and leads to changes in metabolism and behaviour collectively known as sickness behaviour. In healthy young individuals, these changes are normally transient with no long-term consequences. The microglia are involved in the immune to brain signalling pathways. In the aged or diseased brain, the microglia have a primed phenotype as a consequence of changes in their local microenvironment. Systemic inflammation impacts on these primed microglia and switches them from a relatively benign to an aggressive phenotype with the enhanced synthesis of pro-inflammatory mediators. Recent evidence suggests that systemic inflammation contributes to the exacerbation of acute symptoms of chronic neurodegenerative disease and may accelerate disease progression. The normal homeostatic role that microglia play in signalling about systemic infections and inflammation becomes maladaptive in the aged and diseased brain and this offers a route to therapeutic intervention. Prompt treatment of systemic inflammation or blockade of signalling pathways from the periphery to the brain may help to slow neurodegeneration and improve the quality of life for individuals suffering from chronic neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aguzzi A, Sigurdson C, Heikenwaelder M (2008) Molecular mechanisms of prion pathogenesis. Annu Rev Pathol 3:11–40

    PubMed  CAS  Google Scholar 

  2. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi M (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    PubMed  CAS  Google Scholar 

  3. Andersson PB, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48(1):169–186

    PubMed  CAS  Google Scholar 

  4. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285–290

    PubMed  CAS  Google Scholar 

  5. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31(8):465–472

    PubMed  CAS  Google Scholar 

  6. Barron RM, Campbell SL, King D et al (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282(49):35878–35886

    PubMed  CAS  Google Scholar 

  7. Beers DR, Henkel JS, Xiao Q et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103(43):16021–16026

    PubMed  CAS  Google Scholar 

  8. Betmouni S, Perry VH, Gordon JL (1996) Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74(1):1–5

    PubMed  CAS  Google Scholar 

  9. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    PubMed  CAS  Google Scholar 

  10. Bluthe RM, Laye S, Michaud B, Combe C, Dantzer R, Parnet P (2000) Role of interleukin-1beta and tumour necrosis factor-alpha in lipopolysaccharide-induced sickness behaviour: a study with interleukin-1 type I receptor-deficient mice. Eur J Neurosci 12:4447–4456

    PubMed  CAS  Google Scholar 

  11. Bluthe RM, Michaud B, Poli V, Dantzer R (2000) Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol Behav 70:367–373

    PubMed  CAS  Google Scholar 

  12. Boche D, Cunningham C, Docagne F, Scott H, Perry VH (2006) TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol Dis 22:638–650

    PubMed  CAS  Google Scholar 

  13. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S (2009) Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 132:1078–1092

    PubMed  Google Scholar 

  14. Bruce ME, McConnell I, Fraser H, Dickinson AG (1991) The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol 72:595–603

    PubMed  CAS  Google Scholar 

  15. Bucks RS, Gidron Y, Harris P, Teeling J, Wesnes JA, Perry VH (2008) Selective effects of upper respiratory tract infection on cognition, mood and emotion processing: a prospective study. Brain Behav Immun 22:399–407

    PubMed  Google Scholar 

  16. Buljevac D, Flach HZ, Hop WC et al (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–960

    PubMed  CAS  Google Scholar 

  17. Campbell SJ, Perry VH, Pitossi FJ et al (2005) Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 166(5):1487–1497

    PubMed  CAS  Google Scholar 

  18. Cechetto DF, Hachinski V, Whitehead SN (2008) Vascular risk factors and Alzheimer’s disease. Expert Rev Neurother 8:743–750

    PubMed  Google Scholar 

  19. Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112:7–11

    PubMed  CAS  Google Scholar 

  20. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    PubMed  CAS  Google Scholar 

  21. Cunningham C, Campion S, Lunnon K et al (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 15:304–312

    Google Scholar 

  22. Cunningham C, Campion S, Teeling J, Felton L, Perry VH (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 21:490–502

    PubMed  CAS  Google Scholar 

  23. Cunningham C, Deacon R, Wells H (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17(10):2147–2155

    PubMed  CAS  Google Scholar 

  24. Cunningham C, Wilcockson DC, Boche D, Perry VH (2005) Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 79:5174–5184

    PubMed  CAS  Google Scholar 

  25. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    PubMed  CAS  Google Scholar 

  26. D’Ambrosi N, Finocchi P, Apolloni S et al (2009) The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol 183(7):4648–4656

    PubMed  Google Scholar 

  27. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    PubMed  CAS  Google Scholar 

  28. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  29. DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D (2001) Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging 22(6):1007–1012

    PubMed  CAS  Google Scholar 

  30. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939

    PubMed  CAS  Google Scholar 

  31. Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A (2001) Inflammatory response: pathway across the blood-brain barrier. Nature 410:430–431

    PubMed  CAS  Google Scholar 

  32. Exton MS (1997) Infection-induced anorexia: active host defence strategy. Appetite 29(3):369–383

    PubMed  CAS  Google Scholar 

  33. Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH (2005) MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 20(2):283–295

    PubMed  CAS  Google Scholar 

  34. Fick DM, Agostini JV, Inouye SK (2002) Delirium superimposed on dementia: a systematic review. J Am Geriatr Soc 50:723–1732

    Google Scholar 

  35. Field R, Campion S, Warren C, Murray C, Cunningham C (2010) Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 24:996–1007

    PubMed  CAS  Google Scholar 

  36. Fong TG, Tulebaev SR, Inouye SK (2009) Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 5:210–220

    PubMed  Google Scholar 

  37. Fong TG, Jones RN, Shi P et al (2009) Delirium accelerates cognitive decline in Alzheimer disease. Neurology 72:1570–1575

    PubMed  CAS  Google Scholar 

  38. Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894

    Google Scholar 

  39. Gordon S, Taylor R (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    PubMed  CAS  Google Scholar 

  40. Grathwohl SA, Kalin RE, Bolmont T (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12(11):1361–1363

    PubMed  CAS  Google Scholar 

  41. Gray BC, Siskova Z, Perry VH, O’Connor V (2009) Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 35(1):63–74

    PubMed  CAS  Google Scholar 

  42. Guenther K, Deacon RM, Perry VH, Rawlins JN (2001) Early behavioural changes in scrapie-affected mice and the influence of dapsone. Eur J Neurosci 14(2):401–409

    PubMed  CAS  Google Scholar 

  43. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:387–1394

    Google Scholar 

  44. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    PubMed  CAS  Google Scholar 

  45. Harrison NA, Brydon L, Walker C et al (2009) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66:415–422

    PubMed  Google Scholar 

  46. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulated activity and mesolimbic connectivity. Biol Psychiatry 66:407–414

    PubMed  Google Scholar 

  47. Hart BL (1998) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12(2):123–137

    Google Scholar 

  48. Herber DL, Roth LM, Wilson D et al (2004) Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 190(1):245–253

    PubMed  CAS  Google Scholar 

  49. Herrmann I, Kellert M, Schmidt H et al (2006) Streptococcus pneumoniae infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 74:4841–4848

    PubMed  CAS  Google Scholar 

  50. Hoek RM, Ruuls SR, Murphy CA et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    PubMed  CAS  Google Scholar 

  51. Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372(9634):216–223

    PubMed  CAS  Google Scholar 

  52. Holmes C, Cunningham C, Zotova E et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    PubMed  CAS  Google Scholar 

  53. Hope T, Keene J, Fairburn CG, Jacoby R, McShane R (1999) Natural history of behavioural changes and psychiatric symptoms in Alzheimer’s disease: a longitudinal study. Br J Psychiatry 174:39–44

    PubMed  CAS  Google Scholar 

  54. Hwang D, Lee IY, Yoo H et al (2009) A systems approach to prion disease. Mol Syst Biol 5:252

    PubMed  Google Scholar 

  55. Jackson JC, Gordon SM, Hart RP, Hopkins RO, Ely EW (2004) The association between delirium and cognitive decline: a review of the empirical literature. Neuropsychol Rev 14(2):87–98

    PubMed  Google Scholar 

  56. Kamer AR, Craig RG, Pirraglia E et al (2009) TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 216:92–97

    PubMed  Google Scholar 

  57. Kamer AR, Dasanayake AP, Craig RG et al (2008) Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 13:437–449

    PubMed  CAS  Google Scholar 

  58. Kiesecker JM, Skelly DK, Beard KH, Preisser E (1999) Behavioral reduction of infection risk. Proc Natl Acad Sci USA 96:9165–9168

    PubMed  CAS  Google Scholar 

  59. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71(1):93–127

    PubMed  CAS  Google Scholar 

  60. Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29:494–511

    PubMed  CAS  Google Scholar 

  61. Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25:154–159

    PubMed  CAS  Google Scholar 

  62. Krabbe KS, Reichenberg A, Yirmiya R et al (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460

    PubMed  CAS  Google Scholar 

  63. Lacroix S, Feinstein D, Rivest S (1998) The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 8:625–640

    PubMed  CAS  Google Scholar 

  64. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    PubMed  CAS  Google Scholar 

  65. Lasmezas CI, Deslys JP, Robain O et al (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275:402–405

    PubMed  CAS  Google Scholar 

  66. Lee JW, Lee YK, Yuk DY et al (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37

    PubMed  Google Scholar 

  67. Lemstra AW, Groen in’t Woud JC, Hoozemans JJ (2007) Microglia activation in sepsis: a case-control study. J Neuroinflammation 4:4

    PubMed  Google Scholar 

  68. Letiembre M, Hao W, Liu Y et al (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146(1):248–254

    PubMed  CAS  Google Scholar 

  69. Luchsinger JA (2008) Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease: an epidemiological perspective. Eur J Pharmacol 585:119–129

    PubMed  CAS  Google Scholar 

  70. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    PubMed  CAS  Google Scholar 

  71. McColl BW, Allan SM, Rothwell NJ (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158(3):1049–1061

    PubMed  CAS  Google Scholar 

  72. Mildner A, Schmidt H, Nitsche M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2 + monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    PubMed  CAS  Google Scholar 

  73. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    PubMed  CAS  Google Scholar 

  74. Murray C, Sanderson DJ, Barkus C et al (2010) Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging (epub ahead of print). PubMed PMID: 20471138

  75. Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S (2004) Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 24:1340–1349

    PubMed  CAS  Google Scholar 

  76. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    PubMed  CAS  Google Scholar 

  77. O’Shea M, Maytham EG, Linehan JM, Brandner S, Collinge J, Lloyd SE (2008) Investigation of mcp1 as a quantitative trait gene for prion disease incubation time in mouse. Genetics 180(1):559–566

    PubMed  Google Scholar 

  78. Oaten M, Stevenson RJ, Case TI (2009) Disgust as a disease-avoidance mechanism. Psychol Bull 135:303–321

    PubMed  Google Scholar 

  79. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499

    PubMed  CAS  Google Scholar 

  80. Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15(3):349–354

    PubMed  Google Scholar 

  81. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    PubMed  CAS  Google Scholar 

  82. Perry VH, Matyszak MK, Fearn S (1993) Altered antigen expression of microglia in the aged rodent CNS. Glia 7(1):60–67

    PubMed  CAS  Google Scholar 

  83. Pott Godoy MC, Ferrari CC, Pitossi FJ (2010) Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. J Neuroimmunol 222(1–2):29–39

    PubMed  CAS  Google Scholar 

  84. Qiu C, De Ronchi D, Fratiglioni L (2007) The epidemiology of the dementias: an update. Curr Opin Psychiatry 20:380–385

    PubMed  Google Scholar 

  85. Rankine EL, Hughes PM, Botham MS, Perry VH, Felton LM (2006) Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur J Neurosci 24(1):77–86

    PubMed  CAS  Google Scholar 

  86. Ransohoff RM (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10:1507–1509

    PubMed  CAS  Google Scholar 

  87. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    PubMed  CAS  Google Scholar 

  88. Reichenberg A, Yirmiya R, Schuld A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    PubMed  CAS  Google Scholar 

  89. Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101(3):1155–1163

    PubMed  CAS  Google Scholar 

  90. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:65–975

    Google Scholar 

  91. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    PubMed  CAS  Google Scholar 

  92. Schiffenbauer J, Johnson H, Butfiloski E, Wegrzyn L, Soos J (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 90:8543–8546

    PubMed  CAS  Google Scholar 

  93. Schindler MK, Forbes ME, Robbins ME, Riddle DR (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int J Radiat Oncol Biol Phys 70:826–834

    PubMed  Google Scholar 

  94. Schroder K, Sweet MJ, Hume DA (2006) Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology 211:511–524

    PubMed  CAS  Google Scholar 

  95. Seminowicz DA, Mayberg HS, McIntosh AR et al (2004) Limbic-frontal circuitry in major depression: a path modelling metanalysis. Neuroimage 22:409–418

    PubMed  CAS  Google Scholar 

  96. Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95(3):229–234

    PubMed  CAS  Google Scholar 

  97. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1:1313–1315

    PubMed  CAS  Google Scholar 

  98. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    PubMed  CAS  Google Scholar 

  99. Siskova Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175(4):1610–1621

    PubMed  CAS  Google Scholar 

  100. Sly LM, Krzesicki RF, Brashler JR et al (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588

    PubMed  CAS  Google Scholar 

  101. Smith T, Hewson A, Kingsley C, Leonard J, Cuzner M (1997) Interleukin-12 induces relapse in experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol 150:1909–1917

    PubMed  CAS  Google Scholar 

  102. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    PubMed  CAS  Google Scholar 

  103. Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86:1105–1109

    PubMed  CAS  Google Scholar 

  104. Teeling JL, Cunningham C, Newman TA, Perry VH (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain Behav Immun 24:409–419

    PubMed  CAS  Google Scholar 

  105. Teeling JL, Felton LM, Deacon RM, Cunningham C, Rawlins JN, Perry VH (2007) Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain Behav Immun 21:836–850

    PubMed  CAS  Google Scholar 

  106. van Gool WA, van de Beek D, Eikelenboom P (2010) Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375:773–775

    PubMed  Google Scholar 

  107. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19

    PubMed  CAS  Google Scholar 

  108. Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2010) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31(5):747–757

    PubMed  CAS  Google Scholar 

  109. Yong VW, Rivest S (2009) Taking advantage of the systemic immune system to cure brain diseases. Neuron 64(1):55–60

    PubMed  CAS  Google Scholar 

  110. Zotova E, Nicoll JA, Kalaria R, Holmes C, Boche D (2010) Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res Ther 2:1–9

    PubMed  Google Scholar 

Download references

Acknowledgments

The work in the author’s laboratory is supported by the Wellcome Trust, Medical Research Council (UK), Alzheimer’s Disease Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hugh Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, V.H. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 120, 277–286 (2010). https://doi.org/10.1007/s00401-010-0722-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0722-x

Keywords

Navigation