Skip to main content

Advertisement

Log in

Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a conformational disease in which misfolding and aggregation of proteins such as SOD1 (familial ALS) and TDP-43 (sporadic ALS) are central features. The conformations adopted by such proteins within motor neurons in affected patients are not well known. We have developed a novel conformation-specific antibody (USOD) targeted against SOD1 residues 42–48 that specifically recognizes SOD1 in which the beta barrel is unfolded. Use of this antibody, in conjunction with the previously described SEDI antibody that recognizes the SOD1 dimer interface, allows a detailed investigation of the in vivo conformation of SOD1 at the residue-specific level. USOD and SEDI immunohistochemistry of spinal cord sections from ALS cases resulting from SOD1 mutations (A4V and ΔG27/P28) shows that inclusions within remaining motor neurons contain SOD1 with both an unfolded beta barrel and a disrupted dimer interface. Misfolded SOD1 can also be immunoprecipitated from spinal cord extracts of these cases using USOD. However, in ten cases of sporadic ALS, misfolded SOD1 is not detected by either immunohistochemistry or immunoprecipitation. Using the amyloid-specific dyes, Congo Red and Thioflavin S, we find that SOD1-positive inclusions in familial ALS, as well as TDP-43- and ubiquitin-positive inclusions in sporadic ALS, contain non-amyloid protein deposits. We conclude that SOD1 misfolding is not a feature of sporadic ALS, and that both SOD1-ALS and sporadic ALS, rather than being amyloid diseases, are conformational diseases that involve amorphous aggregation of misfolded protein. This knowledge will provide new insights into subcellular events that cause misfolding, aggregation and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

sALS:

Sporadic amyotrophic lateral sclerosis

CR:

Congo Red

CBD:

Corticobasal degeneration

DTT:

Dithiothreitol

ELISA:

Enzyme-linked immunosorbent assay

GuHCl:

Guanidine hydrochloride

MALDI:

Matrix-assisted laser desorption/ionization

PBS:

Phosphate-buffered saline

SOD1:

Superoxide dismutase 1

TDP-43:

TAR DNA binding protein-43

ThS:

Thioflavin S

References

  1. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  2. Belorgey D, Hägglöf P, Karlsson-Li S, Lomas DA (2007) Protein misfolding and the serpinopathies. Prion 1:15–20

    PubMed  Google Scholar 

  3. Bruijn LI, Becher MW, Lee MK et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Article  PubMed  CAS  Google Scholar 

  4. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  PubMed  CAS  Google Scholar 

  5. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  PubMed  CAS  Google Scholar 

  6. Chattopadhyay M, Durazo A, Sohn SH et al (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105:18663–18668

    Article  PubMed  Google Scholar 

  7. Deng HX, Shi Y, Furukawa Y et al (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci USA 103:7142–7147

    Article  PubMed  CAS  Google Scholar 

  8. Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues: a review. Stain Technol 63:201–212

    PubMed  CAS  Google Scholar 

  9. Ezzi SA, Urushitani M, Julien JP (2007) Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 102:170–178

    Article  PubMed  CAS  Google Scholar 

  10. Furukawa Y, Kaneko K, Yamanaka K, O’Halloran TV, Nukina N (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283:24167–24176

    Article  PubMed  CAS  Google Scholar 

  11. Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto M, Hsu LJ, Sisk A et al (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306

    Article  PubMed  CAS  Google Scholar 

  13. Howie AJ, Brewer DB (2009) Optical properties of amyloid stained by Congo red: history and mechanisms. Micron 40:285–301

    Article  PubMed  CAS  Google Scholar 

  14. Ince PG, Lowe J, Shaw PJ (1998) Neuropathol Appl Neurobiol 24:104–117

    Article  PubMed  CAS  Google Scholar 

  15. Jaarsma D, Haasdijk ED, Grashorn JA et al (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7:623–643

    Article  PubMed  CAS  Google Scholar 

  16. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  17. Kato S, Nakashima K, Horiuchi S et al (2001) Formation of advanced glycation end-product-modified superoxide dismutase-1 (SOD1) is one of the mechanisms responsible for inclusions common to familial amyotrophic lateral sclerosis patients with SOD1 gene mutation, and transgenic mice expressing human SOD1 gene mutation. Neuropathology 21:67–81

    Article  PubMed  CAS  Google Scholar 

  18. Kato S, Shimoda M, Watanabe Y et al (1996) Familial amyotrophic lateral sclerosis with a two base pair deletion in superoxide dismutase 1: gene multisystem degeneration with intracytoplasmic hyaline inclusions in astrocytes. J Neuropathol Exp Neurol 55:1089–1101

    PubMed  CAS  Google Scholar 

  19. Kato S, Takikawa M, Nakashima K et al (2000) New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotroph Lateral Scler Other Motor Neuron Disord 1:163–184

    Article  PubMed  CAS  Google Scholar 

  20. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  21. Khare SD, Caplow M, Dokholyan NV (2004) The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 101:15094–15099

    Article  PubMed  CAS  Google Scholar 

  22. Liu HN, Sanelli T, Horne P et al (2009) Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol 66:75–80

    Article  PubMed  CAS  Google Scholar 

  23. McGowan DP, van Roon-Mom W, Holloway H et al (2000) Amyloid-like inclusions in Huntington’s disease. Neuroscience 100:677–680

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041

    Article  PubMed  CAS  Google Scholar 

  25. Mulligan VK, Kerman A, Ho S, Chakrabartty A (2008) Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: implications for pathogenesis in amyotrophic lateral sclerosis. J Mol Biol 383:424–436

    Article  PubMed  CAS  Google Scholar 

  26. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  27. Oztug Durer ZA, Cohlberg JA, Dinh P et al (2009) Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS One 4:e5004

    Article  PubMed  CAS  Google Scholar 

  28. Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1025–1037

    PubMed  CAS  Google Scholar 

  29. Rakhit R, Crow JP, Lepock JR et al (2004) Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 279:15499–15504

    Article  PubMed  CAS  Google Scholar 

  30. Rakhit R, Cunningham P, Furtos-Matei A et al (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277:47551–47556

    Article  PubMed  CAS  Google Scholar 

  31. Rakhit R, Robertson J, Vande Velde C et al (2007) An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat Med 13:754–759

    Article  PubMed  CAS  Google Scholar 

  32. Reaume AG, Elliott JL, Hoffman EK et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  PubMed  CAS  Google Scholar 

  33. Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    Article  PubMed  CAS  Google Scholar 

  34. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    PubMed  CAS  Google Scholar 

  35. Sipe JD (1992) Amyloidosis. Annu Rev Biochem 61:947–975

    Article  PubMed  CAS  Google Scholar 

  36. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  37. Stathopulos PB, Rumfeldt JA, Scholz GA et al (2003) Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc Natl Acad Sci USA 100:7021–7026

    Article  PubMed  CAS  Google Scholar 

  38. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  39. Tu PH, Raju P, Robinson KA et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93:3155–3160

    Article  PubMed  CAS  Google Scholar 

  40. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    PubMed  CAS  Google Scholar 

  41. Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70:144–152

    Article  PubMed  Google Scholar 

  42. Wang J, Slunt H, Gonzales V et al (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12:2753–2764

    Article  PubMed  CAS  Google Scholar 

  43. Wang J, Xu G, Gonzales V et al (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10:128–138

    Article  PubMed  CAS  Google Scholar 

  44. Wang L, Deng HX, Grisotti G et al (2009) Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum Mol Genet 18:1642–1651

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe M, Dykes-Hoberg M, Culotta VC et al (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8:933–941

    Article  PubMed  CAS  Google Scholar 

  46. Williamson D (1993) The unstable haemoglobins. Blood Rev 7:146–163

    Article  PubMed  CAS  Google Scholar 

  47. Zhang YJ, Xu YF, Dickey CA et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534

    Article  PubMed  CAS  Google Scholar 

  48. Zinman L, Liu HN, Sato C et al (2009) A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology 72:1153–1159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Canadian Institutes of Health Research to A.C. and J.R. We thank Nancy F.L. Ng for critical comments, and Kelvin So and Milan Ganguly for performing immunohistochemistry experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janice Robertson or Avijit Chakrabartty.

Additional information

A. Kerman and H.-N. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerman, A., Liu, HN., Croul, S. et al. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol 119, 335–344 (2010). https://doi.org/10.1007/s00401-010-0646-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0646-5

Keywords

Navigation