Skip to main content

Advertisement

Log in

Fragmentation of Golgi apparatus of nigral neurons with α-synuclein-positive inclusions in patients with Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We examined whether the Golgi apparatus (GA) is fragmented in nigral neurons in 18 cases with Parkinson’s disease (PD) and in 8 control cases. The nigral neurons in cases with PD showed various degrees of Lewy pathology with α-synuclein immunohistochemistry, and we divided the neurons into three subtypes according to differences in α-synuclein immunoreactivity: (1) neurons without pale bodies or Lewy bodies, (2) neurons with pale bodies, and (3) neurons with Lewy bodies. In controls, we did not observe fragmented GA in nigral neurons by immunocytochemistry with an anti-TGN46 antibody. In PD, the GA was fragmented in 3% of the nigral neurons without inclusions, and in 5% of the neurons with Lewy bodies. In contrast, fragmented GA was noted in 19% of the neurons containing pale bodies. Since pale bodies represent early stages in the development of brainstem Lewy bodies, our results suggest that the cytotoxicity of α-synuclein-positive aggregates is reduced in the process of Lewy body formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159:637–648

    Article  PubMed  CAS  Google Scholar 

  2. Croul S, Mezitis SGE, Stieber A, Chen YJ, Gonatas JO, Goud B, Gonatas NK (1990) Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, a sialoglycoprotein of rat Golgi apparatus. J Histochem Cytochem 38:957–963

    PubMed  CAS  Google Scholar 

  3. Dale GE, Probst A, Luthert P, Martin J, Anderton BH, Leigh PN (1992) Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 83:525–529

    Article  PubMed  CAS  Google Scholar 

  4. Diaz-Corrales F, Asanuma M, Miyasaki I, Ogawa N (2004) Rotenone induces disassembly of the Golgi apparatus in the rat dopaminergic neuroblastoma B65 cell line. Neurosci Lett 354:59–63

    Article  PubMed  CAS  Google Scholar 

  5. Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1:447–488

    Article  PubMed  CAS  Google Scholar 

  6. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  PubMed  CAS  Google Scholar 

  7. Fujita Y, Sakurai A, Shoji M, Okamoto K (1999) Immunohistological examinations of patients with multiple system atrophy using antibody against α-synuclein. Neuropathology 19 Suppl. A53

  8. Fujita Y, Okamoto K, Sakurai A, Gonatas NK, Hirano A (2000) Fragmentation of the Golgi apparatus of the anterior horn cells in patients with familial amyotrophic lateral sclerosis with SOD1 mutations and posterior column involvement. J Neurol Sci 174:137–140

    Article  PubMed  CAS  Google Scholar 

  9. Fujita Y, Okamoto K, Sakurai A, Kusaka H, Aizawa H, Mihara B, Gonatas NK (2002) The Golgi apparatus is fragmented in spinal cord motor neurons of amyotrophic lateral sclerosis with basophilic inclusions. Acta Neuropathol 103:243–247

    Article  PubMed  CAS  Google Scholar 

  10. Goldberg MS, Lansbury Jr PT (2000) Is there a caused-and effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2:E115–119

    Article  PubMed  CAS  Google Scholar 

  11. Gonatas JO, Mezitis SGE, Stieber A, Fleischer B, Gonatas NK (1989) MG-160: a novel sialoglycoprotein of the medial cisternae of the Golgi apparatus. J Biol Chem 264:646–653

    PubMed  CAS  Google Scholar 

  12. Gonatas NK, Stieber A, Mourelatos Z, Chen Y, Gonatas JO, Appel SH, Hays AP, Hickey WF, Hauw JJ (1992) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am J Pathol 140:731–737

    PubMed  CAS  Google Scholar 

  13. Gonatas NK (1994) Contributions to the physiology of the Golgi apparatus. Am J Pathol 145:751–761

    PubMed  CAS  Google Scholar 

  14. Gonatas NK, Gonatas JO, Stieber A (1998) The involvement of Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis, Alzheimer’s disease, and ricin intoxication. Histochem Cell Biol 109:591–600

    Article  PubMed  CAS  Google Scholar 

  15. Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar α-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277:48984–48992

    Article  PubMed  CAS  Google Scholar 

  16. Hammerschlag R, Stone GC, Bolen FA, Lindsay JD, Ellisman MH (1982) Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus. J Cell Biol 93:568–575

    Article  PubMed  CAS  Google Scholar 

  17. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32

    Article  PubMed  CAS  Google Scholar 

  18. Lane JD, Lucocq J, Pryde J, Barr FA, Woodmann PG, Allan VJ, Lowe M (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156:495–509

    Article  PubMed  CAS  Google Scholar 

  19. Mellman I, Simons K (1992) The Golgi complex: in vitro veritas? Cell 68:829–840

    Article  PubMed  CAS  Google Scholar 

  20. Mourelatos Z, Adler H, Hirano A, Donnenfeld H, Gonatas JO, Gonatas NK (1990) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies. Proc Natl Acad Sci USA 87:4393–4395

    Article  PubMed  CAS  Google Scholar 

  21. Mourelatos Z, Yachnis A, Rorke L, Mikol J, Gonatas NK (1993) The Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 33:608–615

    Article  PubMed  CAS  Google Scholar 

  22. Mourelatos Z, Hirano A, Rosenquist AC, Gonatas NK (1994) Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis (ALS). Clinical studies in ALS of Guam and experimental studies in deafferented neurons and in β, β’ lminidipropionitrile axonopathy. Am J Pathol 144:1288–1300

    PubMed  CAS  Google Scholar 

  23. Mourelatos Z, Gonatas NK, Stieber A, Gurney ME, Dal Canto MC (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu, Zn superoxide dismutase (SOD) becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 93:5472–5477

    Article  PubMed  CAS  Google Scholar 

  24. Mourelatos Z, Gonatas JO, Cinato E, Gonatas NK (1996) Cloning and sequence analysis of the human MG160, a fibroblast growth factor and E-selectin binding membrane sialoglycoprotein of the Golgi apparatus. DNA Cell Biol 15:1121–1128

    Article  PubMed  CAS  Google Scholar 

  25. Ponnambalam S, Girotti M, Yaspo ML, Owen CE, Perry ACF, Suganuma T, Nilsson T, Fried M, Banting G, Warren G (1996) Primate homologues of rat TGN38: primary structure, expression and functional implications. J Cell Sci 109:675–685

    PubMed  CAS  Google Scholar 

  26. Rhodes CH, Stieber A, Gonatas NK (1986) A quantitative electron microscopic study of the intracellular localization of wheat germ agglutinin in retinal neurons. J Comp Neurol 254:287–296

    Article  PubMed  CAS  Google Scholar 

  27. Rhodes CH, Stieber A, Gonatas NK (1987) Transneuronally transported wheat germ agglutinin labels glia as well as neurons in the rat visual system. J Comp Neurol 261:460–465

    Article  PubMed  CAS  Google Scholar 

  28. Sakurai A, Okamoto K, Fujita Y, Nakazato Y, Wakabayashi K, Takahashi H, Gonatas NK (2000) Fragmentation of the Golgi apparatus of ballooned neurons in patients with corticobasal degeneration and Creutzfeldt-Jakob disease. Acta Neuropathol 100:270–274

    Article  PubMed  CAS  Google Scholar 

  29. Sakurai A, Okamoto K, Yaguchi M, Fujita Y, Mizuno Y, Nakazato Y, Gonatas NK (2002) Pathology of the inferior olivary nucleus in patients with multiple system atrophy. Acta Neuropathol 103:550–554

    Article  PubMed  CAS  Google Scholar 

  30. Stieber A, Chen Y, Weil S, Mourelatos Z, Gonatas JO, Okamoto K, Gonatas NK (1998) The fragmented neuronal Golgi apparatus in amyotrphic lateral sclerosis includes the trans-Golgi-network: functional implications. Acta Neuropathol 95:245–253

    Article  PubMed  CAS  Google Scholar 

  31. Wakabayashi K, Hayashi S, Kakita A, Yamada M, Toyoshima Y, Yoshimoto M, Takahashi H (1998) Accumulation of α-synuclein /NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol 96:445–452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very much grateful to Professor Gonatas NK for donating the anti-MG160 antibody. This work was supported by a grant from the Ministry of Health, Labour and Welfare in Japan to K. Okamoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, Y., Ohama, E., Takatama, M. et al. Fragmentation of Golgi apparatus of nigral neurons with α-synuclein-positive inclusions in patients with Parkinson’s disease. Acta Neuropathol 112, 261–265 (2006). https://doi.org/10.1007/s00401-006-0114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0114-4

Keywords

Navigation